
Math571 Homework 2 Due Feb. 21, 2025

Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework
Webpage on the course website for general directions and guidelines.

1. Prove the first three identities below by counting a set in two ways. In each case, give a single
direct argument without manipulating the formulas. In part (d), find a closed form solution
for the sum and give a combinatorial proof.
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2. The graph Pn2P3 is the Cartesian product of the n-vertex path and the 3-vertex path; it
has vertex set {(x, y) : x ∈ [n] and y ∈ [3]} with (x, y) and (x′, y′) adjacent if and only if (1)
x = x′ and |y− y′| = 1, or (2) |x− x′| = 1 and y = y′. An independent set is a set of pairwise
non-adjacent vertices.

Let s0 = 1 and for n ≥ 1, let sn be the number of independent sets in Pn2P3. Let X =
{(n, 1), (n, 2), (n, 3)}; these are the vertices in the last column of Pn2P3. For n ≥ 1, let an,
bn, cn, and dn be the number of independent sets S in Pn2P3 such that S ∩ X equals ∅,
equals {(n, 1)} or {(n, 3)}, equals {(n, 2)}, or equals {(n, 1), (n, 3)}, respectively. Also, let xn
be the column vector [an bn cn dn]

T for n ≥ 1, and for convenience define x0 = [a0 b0 c0 d0]
T =

[1 0 0 0]T .

(a) Find a 4× 4-matrix A such that xn = Axn−1 for n ≥ 1.

(b) Using that sn = [1 1 1 1]xn = [1 1 1 1]Anx0, find row vectors z0, . . . , z4 such that
sn+j = zjxn for 0 ≤ j ≤ 4.

(c) Let B be the 5× 4-matrix with rows z0, . . . , z4. Find a nonzero row vector y such that
yB = 0.

(d) Using that yBxn = 0, find a 4th order homogeneous linear recurrence for sn.
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4. Give a combinatorial proof for the following identity by devising a set that both sides count.
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5. The line segments from (j, ln j) to (j + 1, ln(j + 1)) lie below the curve y = lnx (since
f(x) = lnx is convex). By comparing the area under the segments from j = 1 to j = n with
the area under the curve y = lnx from x = 1 to x = n + 1, show that n! ≤ e

√
n+ 1(n/e)n.

[Hint: use that 1 + x ≤ ex for real x.]

6. Flags on poles.
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(a) Obtain a simple formula for the number of ways to put m distinct flags on a row of r
flagpoles. Poles may be empty, and changing the order of flags on a pole changes the
arrangement. The formula must only use one “m” and one “r”. (The answer is 6 for
m = r = 2, as shown below.)
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(b) Prove that the identity below for rising factorials holds for all x, y ∈ R.
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