Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. Prove the first three identities below by counting a set in two ways. In each case, give a single direct argument without manipulating the formulas. In part (d), find a closed form solution for the sum and give a combinatorial proof.

(a)
$$\binom{2n}{n} = 2\binom{2n-1}{n-1}$$

(b) $\sum_{k} \binom{k}{l} \binom{n}{k} = \binom{n}{l} 2^{n-l}$
(c) $\sum_{i=1}^{n} i(n-i) = \sum_{i=1}^{n} \binom{i}{2}$
(d) $\sum_{j=1}^{m} (m-j) 2^{j-1}$

2. The graph $P_n \square P_3$ is the *Cartesian product* of the *n*-vertex path and the 3-vertex path; it has vertex set $\{(x, y): x \in [n] \text{ and } y \in [3]\}$ with (x, y) and (x', y') adjacent if and only if (1) x = x' and |y - y'| = 1, or (2) |x - x'| = 1 and y = y'. An *independent set* is a set of pairwise non-adjacent vertices.

Let $s_0 = 1$ and for $n \ge 1$, let s_n be the number of independent sets in $P_n \square P_3$. Let $X = \{(n,1), (n,2), (n,3)\}$; these are the vertices in the last column of $P_n \square P_3$. For $n \ge 1$, let a_n , b_n , c_n , and d_n be the number of independent sets S in $P_n \square P_3$ such that $S \cap X$ equals \emptyset , equals $\{(n,1)\}$ or $\{(n,3)\}$, equals $\{(n,2)\}$, or equals $\{(n,1), (n,3)\}$, respectively. Also, let x_n be the column vector $[a_n \ b_n \ c_n \ d_n]^T$ for $n \ge 1$, and for convenience define $x_0 = [a_0 \ b_0 \ c_0 \ d_0]^T = [1 \ 0 \ 0 \ 0]^T$.

- (a) Find a 4×4 -matrix A such that $x_n = Ax_{n-1}$ for $n \ge 1$.
- (b) Using that $s_n = [1 \ 1 \ 1 \ 1] x_n = [1 \ 1 \ 1 \ 1] A^n x_0$, find row vectors z_0, \ldots, z_4 such that $s_{n+j} = z_j x_n$ for $0 \le j \le 4$.
- (c) Let B be the 5×4 -matrix with rows z_0, \ldots, z_4 . Find a nonzero row vector y such that yB = 0.
- (d) Using that $yBx_n = 0$, find a 4th order homogeneous linear recurrence for s_n .
- 3. By pairing positive and negative contributions, give a combinatorial proof for

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 = \begin{cases} 0 & \text{if } n \text{ is odd} \\ (-1)^{n/2} \binom{n}{n/2} & \text{if } n \text{ is even} \end{cases}.$$

4. Give a combinatorial proof for the following identity by devising a set that both sides count.

$$\sum_{k \ge 1} k \binom{m+1}{r+k+1} = \sum_{i=1}^{m} i 2^{i-1} \binom{m-i}{r}$$

- 5. The line segments from $(j, \ln j)$ to $(j + 1, \ln(j + 1))$ lie below the curve $y = \ln x$ (since $f(x) = \ln x$ is convex). By comparing the area under the segments from j = 1 to j = n with the area under the curve $y = \ln x$ from x = 1 to x = n + 1, show that $n! \le e\sqrt{n+1}(n/e)^n$. [Hint: use that $1 + x \le e^x$ for real x.]
- 6. Flags on poles.

(a) Obtain a simple formula for the number of ways to put m distinct flags on a row of r flagpoles. Poles may be empty, and changing the order of flags on a pole changes the arrangement. The formula must only use one "m" and one "r". (The answer is 6 for m = r = 2, as shown below.)

(b) Prove that the identity below for rising factorials holds for all $x, y \in \mathbb{R}$.

$$(x+y)^{(n)} = \sum_{k} {n \choose k} x^{(k)} y^{(n-k)}$$