5487

Directions: Show all work. You may leave your answer in terms of factorials, falling factorials, and binomial coefficients. Any sums or products should be as simple as possible.

1. [1 point] How many ways can a list of 4 distinct integers be formed from $\{1, \ldots, 10\}$ if the first two integers must sum to 8? (1 antra) Kielo: 4 4 not allowed

First 2:
$$17, 26, 35, 53, 62, 11$$
 (6 option) Note: 17 Mote:
Third integer: From $\{1, ..., 10\}$ district from first two (8 options)
Fourth integer: From $\{1, ..., 10\}$ district from first three (7 options)
So # ways = $6 \cdot 8 \cdot 7 = 8(s) = [336]$

1

2. [2 parts, 3 points each] A class of 9 students needs to be split into 3 groups of 3 students.

(a) How many ways can this be done, with no additional restrictions?

With ordered groups:
$$\binom{9}{3} \cdot \binom{6}{3} \cdot \binom{3}{3}$$

To make the groups unordered/indistinguishable: $\frac{1}{3!} \cdot \binom{9}{3} \cdot \binom{6}{3} \cdot \binom{3}{3} = \frac{1}{3!} \cdot \frac{9!}{6!3!} \cdot \frac{6!}{3! \cdot 3!} \cdot 1$
 $= \frac{3}{3!2} \cdot \frac{9}{3!2!} \cdot \frac{5!}{3!2!} = 2 \cdot 7 \cdot 20 = 280$

(b) Suppose that two particular students, say students 8 and 9, do not get along and cannot be assigned to the same group. Now how many ways are there to assign the students to groups?

(1) Choose pair with 9:
$$((.7) \text{ options})$$

(2) Choose pair with 8: $((.5) \text{ options})$
(aut Group is force).
Total: $(.7) \cdot (.5) = .5 \cdot 4 = .7 \cdot 3 \cdot 10 = .210$

3. [3 points] A standard deck of cards has 4 suits (spades, hearts, diamonds, and clubs), and 13 ranks (ace, 2 through 10, jack, queen, and king), and contains one card for each suit/rank pair. Suppose that all 52 cards are ordered randomly. What are the odds that every spade appears before every heart? ~

Solut: Imagine 52 spaces.
(1) Choose a set S of 26 spaces for spades/hoods
$$\binom{52}{26}$$
 options
(2) Order spades in first 13 spaces of S: 13! opts
(3) order hearts in last 13 spaces of S: 13! opts
(4) ORder other cards in remaing spaces: 26! opts.
Total # orderings with all spades before hearts: $\frac{52!}{26!24!}$. (3) · 13! · 26!