Directions: Show all work.

1. [5 points] Use the binomial theorem to find a closed-form formula for $\sum_{k=0}^{n} k2^{k} {n \choose k}^{n}$. The binomial theorem stakes $(x + y)^{n} = \sum_{k=0}^{n} {n \choose k} x^{k} y^{n-k}$. Sitting y = 1 gives $(x + i)^{n} = \sum_{k=0}^{n} {n \choose k} x^{k} (i)^{n-k}$ or $(x + i)^{n} = \sum_{k=0}^{n} {n \choose k} x^{k}$. Differentiating the LHS gives $\frac{1}{2k} [(x + i)^{n}] = n(x + i)^{n-1} \frac{1}{2k} [x + i] = n(x + i)^{n-1}$. Differentiating the RHS gives $\frac{1}{2k} [\sum_{k=0}^{n} {n \choose k} x^{k}] = \sum_{k=0}^{n} \frac{1}{2k} [{n \choose k} x^{k-1}]$. Therefore $n(x + i)^{n-1} = \sum_{k=0}^{n} k {n \choose k} x^{k-1}$. Setting x = 2 gives $\sum_{k=0}^{n} k {n \choose k} 2^{k-1} = n(3)^{n-1}$ and finally unothiplying both sides by 2 gives $\sum_{k=0}^{n} k {n \choose k} 2^{k} = [2n3^{n-1}]$.

2. [5 points] A party has a total of 3n people, with n single people and 2n people in n couples. Find a summation formula for the number of ways to select n people such that each couple has at most 1 selected person.

Solution 1: Inclusion / Exclusion. Let $Z = \{z_1, ..., z_n\}$ and $X = \{x_1, ..., x_n, y_1, ..., y_n\}$; we view Z as the set dsingle people and X so the set d caples, where the jth couple is $\{x_1, y_1\}$. Let $U = \binom{X \cup Z}{n}$ so that U is the set d all n-subsets $d \times \cup Z$. For each i_1 let k_2 let $W = \binom{X \cup Z}{n}$ so that the n-subsets $d \times \cup Z$ where both x_i and y_i are selected. We set $\left| \underbrace{\bigcup_{i=1}^{N} a_i}{i_i} \right|$. Note that if $S \leq [n]$ and |S| = k, then $\left(\bigcap_{i \in S} A_i \right) = \binom{3n-2k}{n-2k}$. Therefore $\left| \underbrace{\bigcup_{i=1}^{N} A_i}{i_i} \right| = \left[\underbrace{\sum_{i=0}^{N} \binom{n}{(1)} \binom{n-2k}{n-2k}}{i_i} \right]$. Solution 2: Summation Principle. Let Z and X be as in Soln 1. Let A be the set d all n-subsets $d \times \cup Z$ that contain at most \bot porson from each couple $\{x_1, y_2\}$. To be the set d all n-subsets $Q \in A$ such that $|Q \cap X| = k$ and $|Q \cap Z| = n-k$. Note that $|A_k| = \binom{n}{(1)} 2^k \binom{n-k}{n-2k}$, since we obtain a set $Q \in A_k$ by choosing k couples $(\binom{N}{k})$ options), choosing $x_i \cong y_i$ for each chosen couple $(2^k option)$ and findly choosing n-k people from the set Z d single people. Hence $|A| = \frac{2}{k-0} |A_k| = \frac{2}{k-0} \binom{N}{k-1}^2 \binom{N}{k-2} \binom{N}{k-2} \binom{N}{k-2}$. Note: Since both solutions count the salue set, we have $\sum_{k=0}^{N} \binom{N}{(k-1)^k} \binom{3n-2k}{n-2k} = \sum_{k=0}^{N} 2^k \binom{n}{k}^2}$.