/

Directions: Show all work.

1. [5 points] Let $n \ge 1$. Give the identity that is proved by the following combinatorial argument: Each non-empty subset of $\{1, \ldots, n\}$ consists of a maximum element k for some $1 \le k \le n$ together with a subset of $\{1, \ldots, k-1\}$.

The number of non-empty subsets of
$$[n]$$
 is $2^{n} - 1$
The number of subsets of $\{1, \dots, k-1\}$ is 2^{k-1} . Therefore the organisation of $\sum_{k=1}^{n} 2^{k-1} = 2^{n} - 1$.

2. [5 points] Let $n \ge 1$. Give a combinatorial proof that $n! - 1 = \sum_{k=1}^{n} (k-1)(k-1)!$. (Hint: except for the identity permutation σ where $\sigma = 12 \cdots n$, every permutation σ of [n] has at least one index i such that the value of σ at position i is not equal to i.)

let A be the set of permutations of [n] such that or is not the
identity. We count A in two ways.
Since there are n! permutations of [n] a) only are of them is the identity
we have
$$|A| = n! - 1$$
, giving the LHS.
For the RHS let A, be the set of permutations or in A such that k is

For the RHS, let
$$A_k$$
 be the set of permutations σ in A such that k is
the max integer with $\sigma(k) \neq k$. As noted in the huit, every non-identity
permutation has at least one index i such that $\sigma(i) \neq i$, and so $\{A_{i}, ..., A_{n}\}$
is a partition of A_{i} implying $|A| = \sum_{k=1}^{\infty} |A_{k}|$. To could A_{k} , we note that
each $\sigma \in A_{k}$ satisfies $\sigma(j) = j$ for $j > k$ and so σ is determined by the
permutation of the elements $\{i, ..., k\}$ in the first k positians of σ . Since
 $\sigma(k) \neq k$, it must be that $\sigma(k) \in \{i, ..., k-1\}$ and so there are $k-1$ options
for $\sigma(k)$. We complete σ by arranging the remaining symbols in $\{i, ..., k\} - \{\sigma(k)\}$
in the first $k-1$ positions of σ . So $|A_{k}| = (k-1)(k-1)!$ by the product principle.
Therefore $n! - 1 = |A| = \sum_{k=1}^{\infty} |A_k| = \sum_{k=1}^{\infty} (k-1)(k-1)!$