Name: _Solutions

Directions: Show all work.

1. **[5 points]** Prove for $n \ge 0$, we have $\sum_{k=1}^{n} k(k+2) = \frac{1}{6}[n(n+1)(2n+7)]$.

P: By induction on M.

Basis Step: If n=0, then the LHS is the empty sun, and hence O, and the RHS is to[0.1.7] =0.

Inductive Steps. Suppose $n \ge 1$. By the inductive hypothesis, we have $\sum_{k=1}^{n-1} k(k+2) = \frac{1}{2} \left[(n-i) n(2(n-i)+7) \right]$.

Adding n(n+2) to both sides gives $= t \left[n \left[(n-1)(2n+5) + 6(n+2) \right] \right] = t \left[n \left[2n^2 - 2n + 5n - 5 + 6n + 12 \right] \right]$ $= \frac{1}{6} \left[n \left(2n^2 + 9n + 7 \right) \right] = \frac{1}{6} \left[n \left(n+1 \right) \left(2n + 7 \right) \right].$

Hence the identity holds at n.

2. [5 points] Let t be a real number, let $a_0 = 0$, let $a_1 = t$, and let $a_n = 3a_{n-1} - 2a_{n-2}$ for $n \ge 2$. Prove that for $n \ge 0$, we have that $a_n = t(2^n - 1)$.

Pf. By induction on n.

Basis Step: If N=0, then $a_6=0$ and $t(2^n-1)=t(2^o-1)=t(1-1)=0$. If n=1, then $a_1=t$ and $t(2^n-1)=t(2^1-1)=t$. Hence $a_n = t(2^n - 1)$ when $n \in \{0, 1\}$

Inductive Step: Suppose $N \ge 2$. By the inductive hypothesis, we have $a_{n-1} = t(2^{n-1} - 1)$ al $a_{n-2} = t(2^{n-2} - 1)$. Since $n \ge 2$, the recurrence applies as we compute

$$a_{n} = 3a_{n-1} - 2a_{n-2} = 3(t(2^{n-1} - 1)) - 2(t(2^{n-2} - 1))$$

$$= 3t 2^{n-1} - 3t - 2t 2^{n-2} + 2t$$

$$= 6t 2^{n-2} - 2t 2^{n-2} - t$$

$$= 4t 2^{n-2} - t$$
Hence the identity holds of n .

W