Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. [2.3.14] In class, we showed that $r(3,3,3) \leq 17$. What upper bound do our techniques give on r(3,3,3,3,3)?
- 2. Find $r(C_3, C_4)$.
- 3. Here, we show that $r(P_4, K_n) = 3(n-1) + 1$.
 - (a) With s = 3(n-1), find a blue/red coloring of the edges of K_s that avoids a blue copy of P_4 and a red copy of K_n .
 - (b) Prove that if G is a graph in which every vertex has degree at least 3, then G contains P_4 as a subgraph.
 - (c) With s = 3(n-1) + 1, prove that every blue/red coloring of the edges of K_s contains a blue copy of P_4 or a red copy of K_n . (Hint: if every vertex in G has at least 3 blue neighbors, then apply part (b) to the blue subgraph. Otherwise, G has a vertex u with blue degree at most 2. How large is the red neighborhood of u?)

Comment: the argument above can be generalizes to longer paths (and even to other graphs called trees). Do you see how it generalizes to give $r(P_5, K_n)$?