Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. For $b \ge 0$, let b_n be the number of ways to tile a $3 \times n$ grid with 1×3 rectangular tiles. Note that $b_0 = 1$, since placing zero tiles counts as a tiling of the 3×0 grid.
 - (a) Find a recurrence relation for b_n . (Your recurrence should include all needed base cases.)
 - (b) Recall that the number of ways a_n of tiling a $2 \times n$ grid with dominos is given by the recurrence $a_0 = a_1 = 1$ and $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$. How does b_n compare with a_n , the number of ways to tile a $2 \times n$ grid with dominos? Explain. Can you prove your claim?
- 2. [SS 1.3.{8,9}] You work at a car dealership that sells three models: A pickup trick, an SUV, and a compact hybrid. Your job is to park the vehicles in a row. The pickup trucks and the SUVs take up two spaces while the hybrid takes up one space. Let n be a nonnegative integer and let f(n) be the number of ways of arranging vehicles in exactly n spaces, with each space occupied.
 - (a) Find a recurrence relation for f(n) and use it to compute f(0) through f(10).
 - (b) Find a first-order recurrence relation g that appears to match f (i.e. g(n) should depends only on g(n-1)).
 - (c) Prove that g(n) = f(n) by induction.
 - (d) Use the values for f(0) and f(1) to find a candidate formula for f(n) of the form $f(n) = a2^n + b(-1)^n$. Prove that your formula is correct.
- 3. [2.1.6] You have a 3×3 -square, and you throw 10 darts at it. Show that no matter where the darts land, there are two darts whose distance is at most $\sqrt{2}$.
- 4. [2.1.22] I have 51 rectangular pieces of cardboard, each of which has an integer length and width in the set {1,...,100}. (Note that squares are allowed.) Prove that there are two rectangles such that one can fully cover the other when placed on top.