Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. The k-dimensional hypercube Q_k has vertex set $\{0,1\}^k$ (all bitstrings of length k) with u and v adjacent if and only if u and v differ in one position. Prove that Q_k is bipartite.
- 2. [10.3.10] Let G be a multigraph with n vertices and m edges. Show that G has a bipartite subgraph that has n vertices and at least m/2 edges.
- 3. Let G be a k-regular bipartite graph. Prove that E(G) can be partitioned into perfect matchings. (Hint: use Hall's Theorem to show that G has a perfect matching and then use induction on k.)
- 4. [10.7.4] Let G be a graph. Prove that $\chi(G) \leq 2$ if and only if G is bipartite.
- 5. [10.7.5] Let G be an n-vertex graph. Prove that $\alpha(G) \cdot \chi(G) \ge n$.
- 6. Chromatic number and odd cycles.
 - (a) Let G be a graph such that $\chi(G) \geq 9$. Prove that G has three vertex-disjoint odd cycles.
 - (b) Find an example of a graph G with $\chi(G) = 8$ such that G does not contain three vertex-disjoint odd cycles.