Name:

Directions: Solve the following problems. Give supporting work/justification where appropriate.

- 1. [2 parts, 10 points each] Give a contrapositive proof of the following.
 - (a) Suppose $a, b \in \mathbb{Z}$. If ab + b is even, then a is odd or b is even.

(b) Suppose $x \in \mathbb{R}$. If $x^2 + 5x < 0$, then x < 0.

2. [10 points] Prove the following. Let $a \in \mathbb{Z}$. If $a \equiv 3 \pmod{7}$, then $a^2 \equiv 2 \pmod{7}$.

3. [10 points] Prove that for each $x \in \mathbb{R}$, either $(x+\sqrt{2})$ is irrational or $(-x+\sqrt{2})$ is irrational.

4. [10 points] Let x and y be positive real numbers. Prove that if $x \neq y$, then $\frac{x}{y} + \frac{y}{x} > 2$.

5. [10 points] Let $a, b, c \in \mathbb{Z}$. Use the corollary below to prove that if $a \mid c$ and $b \mid c$ where gcd(a, b) = 1, then $ab \mid c$.

Corollary 1. Let $x, y, z \in \mathbb{Z}$. If $x \mid yz$ and gcd(x, y) = 1, then $x \mid z$.

- 6. [5 points] How many subsets of $\{1, \ldots, 14\}$ have size 4? Give a simplified, numerical answer.
- 7. [3 parts, 5 points each] A business class has a total enrollment of 26 students, with 14 men and 12 women. The class will send a team of 6 students to compete in a national contest. In the following, you may leave your answers in terms of binomial coefficients and simple arithmetic operations (no need to simplify).
 - (a) How many ways are there to select a team?
 - (b) How many ways are there to select a team consisting of all women?
 - (c) How many ways are there to select a team with at least one man and at least one woman?

8. [20 points] Let n be a positive integer. Prove that there exist unique non-negative integers a and b such that $n = 3^a \cdot b$ and $3 \nmid b$.

(Scratch Paper)