|--|

Directions: Show all work unless directed otherwise. No credit for answers without work.

1. [5 points] Give the definition of a prime number.

2. **[5 points]** Compute ord₇(27440).

3. [15 points] Compute $(26)^{-1}$ in \mathbb{F}_{71} using the fast power algorithm. Show all work in your computation.

4. [15 points] Let p be a prime and let s, t, and a be integers such that $p \nmid a$. Prove that if $s \equiv t \pmod{p-1}$, then $a^s \equiv a^t \pmod{p}$.

- 5. Primitive roots in \mathbb{F}_{19} .
 - (a) [5 points] Verify that 2 is a primitive root in \mathbb{F}_{19} using as few modular exponentiation computations as possible.

(b) [5 points] Use part (a) to find all primitive roots in \mathbb{F}_{19} .

6. [15 points] Alice and Bob decide to use the affine cipher in \mathbb{F}_{79} . Recall that \mathcal{K} is the set of pairs (α, β) in \mathbb{F}_{79} such that $\alpha \neq 0$, $\mathcal{M} = \mathcal{C} = \mathbb{F}_{79}^*$, and

$$e_k(m) = \alpha m + \beta$$
 $d_k(c) = \alpha^{-1}(c - \beta).$

Suppose that Eve intercepts ciphertexts $c_1 = 8$ and $c_2 = 56$ and discovers that the corresponding messages are $m_1 = 61$ and $m_2 = 54$. Find Alice and Bob's shared key (α, β) .

- 7. [3 parts, 5 points each] Recall the exclusive-or cipher, where \mathcal{K} , \mathcal{M} , and \mathcal{C} are the set of bitstrings of length B, and $e_k(m) = k \oplus m$.
 - (a) What is the decryption function $d_k(c)$?
 - (b) Alice and Bob use k = 10011. Encrypt 00101 and decrypt 11101.

(c) Alice and Bob decide to use the exclusive-or cipher, and agree on a shared key k which is not known to Eve. Alice selects a message m, computes $c = e_k(m)$, and sends c to Bob. Unfortunately, Eve intercepts c. Is the cipher secure? Explain why or why not.

8. **[5 points]** Describe the relative difficulty of the Discrete Logarithm Problem (DLP) and the Diffie-Hellman Problem (DHP).

- 9. Alice and Bob use Diffie-Hellman to exchange a shared key. They choose p=47 and g=15.
 - (a) [7 points] Alice chooses the secret integer a = 12. What should she send to Bob?

(b) [8 points] Alice receives the reply 7 from Bob. What is the the shared key?

10. [2 bonus points] Instruction: phrase your response in the form of a question. Germany sent this encrypted message to Mexico in 1917 which discussed a plan for Mexico to attack the United States.