Directions: Show all work. No credit for answers without work.

1. [2 points] Give a definition of $\operatorname{ord}_p(n)$. (There are several equivalent ways to define this; give only one.)

2. [2 points] Find $ord_7(4900)$.

3. [2 points] Give 3 different examples of an integer n that satisfies $\operatorname{ord}_2(n) = 3$.

- 4. [2 points] Let m be a positive integer and let p be a prime. For each algebraic structure below, circle the arithmetic operations that are well-behaved.
 - (a) \mathbb{Z}_m^*
 - (b) \mathbb{F}_p
 - (c) \mathbb{Z}_m

5. [2 points] Let a and b be positive integers such that $\operatorname{ord}_2(a) = \operatorname{ord}_2(b)$. Let k be the common order of 2 in both a and b; that is, $k = \operatorname{ord}_2(a)$ and $k = \operatorname{ord}_2(b)$. Prove that if $\operatorname{ord}_2(a+b) \geq k+1$.