Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. [JJJ 2.8] Alice and Bob agree to use the prime p = 1373 and the base g = 2 for communications using the ElGamal public key cryptosystem.
 - (a) Alice chooses a = 947 as her private key. What is the value of her public key?
 - (b) Bob chooses b = 716 as his private key, so his public key is $B = 2^{716} = 469$. Alice encrypts the message m = 583 using the ephemeral key k = 887. What is the ciphertext (c_1, c_2) that Alice sends to Bob?
 - (c) Alice decides to choose a new private key a = 299 with associated public key $A = 2^{299} = 34$. Bob encrypts a message using Alice's public key and sends her the ciphertext (661, 1325). Decrypt the message.
 - (d) Now Bob chooses a new private key and publishes the associated public key B = 893. Alice encrypts a message using this public key and sends the ciphertext (693, 793) to Bob. Eve intercepts the transmission. Help Eve by solving the discrete logarithm problem $2^b \equiv 893 \pmod{1373}$ and use the value of b to decrypt the message.
- 2. In this problem, we modify the ElGamal public key cryptosystem to create a new cryptosystem called ElGamalAdd. Instead of multiplying the message m by the shared secret, this system adds m to the shared secret. Specifically, we publish a large prime p and a primitive root g in \mathbb{F}_p of large prime order. The key space consists of all pairs $(k_{\text{priv}}, k_{\text{pub}})$ of the form (a, g^a) where $a \in \mathbb{F}_p^*$. The encryption function follows.

 $e_{k_{\text{pub}}}(m)$, where k_{pub} has the form g^a : Choose an ephemeral key k in \mathbb{F}_p at random. Compute $c_1 = g^k$ and $c_2 = m + (g^a)^k$. Return (c_1, c_2)

- (a) What is the associated decryption function?
- (b) If Eve wishes to decrypt messages sent with the ElGamalAdd cryptosystem, she may want to solve the corresponding ElGamalAdd Problem, or EGAP. The EGAP problem is to compute m given the information $p, g, g^a, g^k, m + g^{ak}$ that is available to Eve. Prove that EGAP and the Diffie–Hellman Problem (DHP) have the same level of difficulty. **Note:** this means you must show (1) how a black box solution to DHP can be used to solve EGAP efficiently, and (2) how a black box solution to EGAP can be used to solve DHP efficiently.
- (c) In light of the result in part (b), discuss the relative strengths of the ElGamal and ElGamalAdd cryptosystems.
- 3. [JJJ 2.16] Decide whether each of the following are true or false.
 - (a) $x^2 + \sqrt{x} \in O(x^2)$.
 - (b) $k^{300} \in O(2^k)$.
 - (c) $2^k \in O(e^k)$.
 - (d) $e^k \in O(2^k)$.
 - (e) $k^r \in O(e^{\sqrt{k}})$ for each positive real number r.

- (f) $e^{\sqrt{k}} \in O(e^{rk})$ for each positive real number r.
- 4. Shanks's Algorithm. Let p = 211 and let g = 8.
 - (a) Find the order N of g in \mathbb{F}_p .
 - (b) Compute List 1 in Shanks's Algorithm for computing $\log_q(h)$.
 - (c) Use Shanks's Algorithm to find each of the following discrete logarithms. In each case, explicitly give List 2.
 - i. $\log_q(122)$

ii. $\log_g(150)$

iii. $\log_{g}(200)$