Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. Modular exponentiation in \mathbb{F}_7 .
 - (a) Fill in the table so that row a and column k contains a^k , where $a^k \in \mathbb{F}_7$.

a^k	0	1	2	3	4	5	6	7	
0	1	0	0	0	0	0	0	0	
1									
2									
3									
4									
5									
6									

- (b) For each non-zero element a, find the order of a in \mathbb{F}_{7}^{*} .
- (c) Use the table to find all primitive roots in \mathbb{F}_7 . Verify that the number of primitive roots equals $\phi(6)$.
- 2. Use Fermat's Little Theorem and the fast power algorithm to compute the multiplicative inverse of 68 in \mathbb{F}_{101} .
- 3. Using as few modular exponentiation computations as possible, determine whether the following are primitive roots in \mathbb{F}_{101} .
 - (a) 76
 - (b) 87
 - (c) 44
- 4. Primitive roots in \mathbb{F}_{23} .
 - (a) Find a primitive root of \mathbb{F}_{23} .
 - (b) Use part (a) to list all primitive roots of \mathbb{F}_{23} .

- 5. 🖪 Fast Power Algorithm.
 - (a) In sage, reducing an integer a modulo m is achieved with the expression a % m. The following sage code implements the fast power algorithm, but a few blanks are missing. Fill in the blanks.

```
def fast_power (a, k, m):
    """for non-negative integers k, computes a^k modulo m"""
    if (k == 0):
        return ______

    if ((k % 2) == 1):
        # k is odd
        # recursively compute y = a^{k-1} (mod m)
        y = fast_power(a, k-1, m)
        return _____ % m
else:
        # k is even
        # recursively compute y = a^{k/2} (mod m)
        y = fast_power(a, k/2, m)
        return _____ % m
```

- (b) Use the fast power algorithm to compute $(28324)^{14635515} \pmod{73254}$.
- (c) Use the fast power algorithm and Fermat's Little Theorem to make an educated guess about whether the following numbers are prime.
 - i. 29399891
 - ii. 34728343
 - iii. 837249143
 - iv. 296787375427