Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. Modular Arithmetic Tables
 - (a) Make addition and multiplication tables for \mathbb{Z}_3 .
 - (b) Make addition and multiplication tables for \mathbb{Z}_6 .
- 2. Compute the following. Your answer should be an integer in the set $\{0, 1, \ldots, m-1\}$, where m is the modulus in the given problem.
 - (a) $73 6173 \pmod{22}$
 - (b) $342 \cdot 825 \pmod{17}$
- 3. Use the extended Euclidean algorithm to find a multiplicative inverse of 50 modulo 2891 in the range $\{0, 1, \ldots, 2890\}$.
- 4. Make a multiplication table for the unit group \mathbb{Z}_{9}^{*} .
- 5. Use the fast power algorithm to compute $2^{300} \pmod{1000}$. Show intermediate powers of 2.
- 6. Using a computer/calculator only for basic arithmetic operations (addition, subtraction, multiplication, and division), solve for x in $523x \equiv 211 \pmod{591}$. Show your work.
- 7. Let a, b, g, and m be integers such that $g^a \equiv 1 \pmod{m}$ and $g^b \equiv 1 \pmod{m}$. Prove that $g^{\gcd(a,b)} \equiv 1 \pmod{m}$.
- 8. [Challenge] Let a and b be integers, not both zero. The least common multiple of a and b, denoted lcm(a, b), is the smallest positive integer that is a multiple of both a and b. For example, lcm(10, 4) = 20. Prove that lcm(a, b) = (ab)/gcd(a, b). Hint: find (and prove) a relationship between the positive common divisors of a and b and the positive common multiples of a and b.