Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. The Caeser cipher.
 - (a) Encrypt the message "exchange all assets" using a Caesar cipher with a forward shift of 5 characters.
 - (b) Decrypt the following message, which has been encoded with a Caesar cipher.

DPYLA OLTVU LFAVT VYYVD

- 2. An Improved Caeser. Consider the following variant on the Caeser cipher. Two integer keys k_1 and k_2 are selected. To encode a message, the first letter is shifted forward by k_1 letters. The second letter is shifted forward by k_2 letters. The third letter is shifted forward by k_1 letters, the forth by k_2 letters, and so on until the end of the message.
 - (a) How many improved Caeser ciphers are there?
 - (b) Describe an efficient technique to break the improved Caeser cipher. (By efficient, we want something which is faster than trying all possible improved Caeser ciphers.)
 - (c) The following excerpt has been encrypted with an improved Caeser cipher.

RWCHFXNXQAWXLVFTPTGCRWCWYGZDPDDCYEJTQFSPPPLIGCCSQWCWYHZTCCFTPTQTTTPPJSYNQPLSUXJAPTKPGCQTTTPPJBMGCLCIFPRRYBCQWGYXJUPDKGMBCWYKCTQRYECSRWGHKXQUMGRJLTMUADSGQTLDMCCXQPJAMLCSRDEDMCZDYGBIFTQWGEMGADKTYHFDPTDGMBFTPHFTGHYEPXQDLCMLRWCEYHQTLVCGQEPDZPZAWHNTLSRWCAMCEQJPXXLVBPWHJDMZGCEDSIDGMBSCBTP1FTYLLXLVQPRKCHSKGJQPLSRWCQCPSIGUSAAXRNYCBXLHUTYGGCEIFXLZMURTLSYNQDDIFXQHMGRDDEYHRXKTUTEDMJRTTTPNBPWXLPZDYIYCBGCFSTQIRWCBRDADKTYHFDPTGIQDMIFTQIFTKLCAGTRTLHRTNHDGMBRWCHFXNPLSRTJARWCBFDUHNACCBXBIFTAXRNGHYCBWMLKJAWZTRICGRWCWICADPPTGHFTPTRWYCYCWLFTPTCAQTGCCJPDNTYCBWMLADMAGIGHYCBLFPRUPDXTLRMCRXLTLIQDDXATAGCPKIFTPTYGCPLSUWYIYIGBCLCPPTFPTXLVAPTDPIGCEPZDSIRWCRJLIPNYCBHYXJXLVRDRWCXQAYCBHGCRWCQYNRWGHRGYCOJG<

What are the first 11 words of this excerpt?

- 3. [JJJ 1.{9,10}.c] Let $d = \gcd(16261, 85652)$. Use the extended Euclidean algorithm to find integers u and v such that 16261u + 85652v = d.
- 4. Let a, b, and c be integers such that $a \mid b$ and $a \mid c$. Prove that $a \mid (b+c)$ and $a \mid (b-c)$.
- 5. [Challenge] Let a_1, a_2, \ldots, a_k be integers, not all of which are zero. We define $gcd(a_1, \ldots, a_k)$ to be the largest integer that divides every integer in $\{a_1, \ldots, a_k\}$. Show that there exist integers u_1, \ldots, u_k such that $u_1a_1 + u_2a_2 + \cdots + u_ka_k = d$.