1. [4 parts, 1/2 point each] Determine the truth value of each of the following wffs in the interpretation where the domain is $\{0, 1, 2, 3, \ldots\}$ and P(x) is "x is even". (Remember that 0 is even.) Write the entire word "true" or the entire word "false".

(a)
$$\forall x [\exists y [P(y) \land y > x]]$$

(c)
$$\exists x \left[\forall y \left[P(x) \rightarrow P(y) \right] \right]$$

(b)
$$\exists x \left[\forall y \left[P(y) \rightarrow y > x \right] \right]$$

(d)
$$\forall x [\exists y [P(x) \rightarrow P(y)]]$$

2. [3 parts, 1 point each] Using the predicates shown, translate the following into wffs.

J(x): "x is a judge"	C(x): "x is a chemist"	L(x): "x is a lawyer"
W(x): "x is a woman"	A(x,y): "x admires y"	

- (a) No woman is both a lawyer and a chemist.
- (b) Every judge admires a female lawyer.
- (c) Some women admire only those who are lawyers or judges.

3. [2 points] Write the negation of the sentence "Some lawyers admire only judges". Your sentence should be as simple as possible.

Derivation Rule	Name/Abbreviation for Rule	
$\begin{array}{ccc} P \lor Q & \Longleftrightarrow & Q \lor P \\ P \land Q & \Longleftrightarrow & Q \land P \end{array}$	Commutative—comm	
$ \begin{array}{ccc} (P \lor Q) \lor R & \Longleftrightarrow & P \lor (Q \lor R) \\ (P \land Q) \land R & \Longleftrightarrow & P \land (Q \land R) \end{array} $	Associative—ass	
$\begin{array}{ccc} (P \lor Q)' & \Longleftrightarrow & P' \land Q' \\ (P \land Q)' & \Longleftrightarrow & P' \lor Q' \end{array}$	De Morgan's laws—De Morgan	
$P o Q \iff P' \lor Q$	Implication—imp	
$P \iff (P')'$	Double negation—dn	
$P \leftrightarrow Q \iff (P \to Q) \land (Q \to P)$	Defn of Equivalence—equ	
$\left. \begin{array}{c} P \\ P ightarrow Q \end{array} ight. \implies Q$	Modus ponens—mp	
$\left. \begin{array}{c} P \rightarrow Q \\ Q' \end{array} \right\} \;\; \Longrightarrow \;\; P'$	Modus tollens—mt	
$\left. \begin{array}{c} P \\ Q \end{array} \right\} \ \implies \ P \wedge Q$	Conjunction—con	
$P \wedge Q \implies \left\{ \begin{array}{c} P \\ Q \end{array} \right.$	Simplification—sim	
$P \implies P \lor Q$	Addition—add	

4. [3 points] Using the given derivation rules and the 4 derivation rules involving quantifiers, give a proof sequence to show the following wff is valid.

$$\exists x \left[\forall y \left[Q(x,y) \right] \right] \rightarrow \forall y \left[\exists x \left[Q(x,y) \right] \right]$$