Name:			

Unless told otherwise, show your work. Answers without work earn reduced credit.

1. [3 points] Decide whether the given functions are one-to-one/injective, onto/surjective, or bijective. For each blank cell in the table, write "Yes" if the function has the property, and "No" otherwise. You do not need to show your work.

In the following, let A^* be the set of finite strings of a's and b's. For example, aaba, bb, and the empty string λ are all in A^* . Recall that $\mathbb{N} = \{0, 1, 2, \ldots\}$ and \mathbb{Z} is the set of integers.

Function	one-to-one	onto	bijective
$f: \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x - 1$			
$f: \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x^2 - 1$			
$f: \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x^3 - 1$			
$f \colon A^* \to \mathbb{N}$ where $f(x)$ equals the length of x			
$f: A^* \to A^* \text{ where } f(x) = xx$			
$f \colon A^* \to A^*$ where $f(x)$ equals the reverse of x			

- 2. [2 parts, 1 point each] Let A be the set of all strings of a's and b's of length 8. Let $f: A \to A$ be the function that shifts every character to the right, and moves the 8th character to the front of the string. For example, f(abaaabbb) = babaaabb. Let $g: A \to A$ be the function that reverses the string. For example, g(babaaabb) = bbaaabab.
 - (a) Find $(f \circ g)(abbababb)$.

(b) Let $h = f \circ g$. Is h a bijection? If h is a bijection, describe the inverse h^{-1} . If h is not a bijection, explain why.

3. [3 parts, 1 point each] Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Express the following permutations as the composition of zero or more disjoint cycles; each cycle should have at least 2 elements.

(a)
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 6 & 1 & 4 & 3 & 8 & 7 \end{pmatrix}$$

(b)
$$(3 6 8 4) \circ (6 2 4 5)$$

(c)
$$(2\ 6\ 8) \circ (2\ 7) \circ (3\ 1\ 6\ 5) \circ (4\ 2)$$

4. [2 points] Prove, by finding constants that satisfy the definition of order of magnitude, that $f = \Theta(g)$ if $f(n) = 3\log(n^5)$ and $g(n) = \log(n)$.