Name:

Show your work. Answers without work earn reduced credit.

- 1. [2 parts, 1 point each] An air-freshener starts with 50 grams and evaporates. In each of the following cases, write a formula for the quantity Q in grams of air-freshener remaining t days after the start. The decrease is:
 - (a) 3 grams a day

(b) 16% a day

$$Q = 50(1-0.16)^{t}$$

$$Q = 50(0.84)^{t}$$

2. [4 parts, 1 point each] Solve the following equations for t exactly. Decimal approximations are worth partial credit.

(a)
$$3^{t} = 4$$

$$\ln(3^{t}) = \ln(4)$$

$$t \ln(3) = \ln(4)$$

$$t = \frac{\ln(4)}{\ln(3)}$$

(b)
$$4e^{2t} = 12$$
 $ln(4e^{2t}) = 1a$
 $e^{2t} = 3$
 $ln(e^{2t}) = ln(3)$
 $2t = ln(3)$
 $t = ln(3)$

(c)
$$7\left(\frac{2}{3}\right)^{t} = 2$$

$$\left(\frac{2}{3}\right)^{t} = \frac{2}{7}$$

$$\ln\left(\frac{2}{3}\right)^{t} = \ln\left(\frac{2}{7}\right)$$

$$t \cdot \ln\left(\frac{2}{3}\right) = \ln\left(\frac{2}{7}\right)$$

$$\left(\frac{2}{3}\right)^{t} = \ln\left(\frac{2}{7}\right)$$

$$\ln\left(\frac{2}{3}\right)^{t} = \ln\left(\frac{2}{7}\right)$$

$$\ln\left(\frac{2}{7}\right)^{t} =$$

3. [2 points] Find the half-life of a quantity that decreases at a discrete rate of 6% each month.

- 4. [2 parts, 1 point each] You are negotiating a contract with a client, and three versions are proposed. Contract A calls for the client to make three payments of \$1000 each, to be paid now, one year from now, and two years from now. Contract B calls for a single payment of \$3200 to be paid in two years. Contract C requires a single payment of \$2900 now. You estimate that invested money will grow at a continous rate of 5% each year.
 - (a) Find the future value of all three contracts in 2 years.

Contract A:
$$P = 1000 e^{0.05(2)} + 1000 e^{0.05(1)} + 1000$$

 $\approx |33156.44|$
Contract B: $P = |53200|$
Contract C: $P = 2900 e^{0.05(2)} \approx |3205.00|$

(b) Find the present value of all three contracts.
$$P = P_0 e^{0.05 t}$$

Contract A: $P_0 = \frac{3156.44}{e^{0.05(2)}}$
 $= 2856.07

Contract B: $P_0 = \frac{3200}{e^{0.05(2)}} = 52895.48

Contract C: $P_0 = 2900