
Integration

1.
∫

dx

∫
dx = x + C by power rule for antiderivatives

2.
∫

2x3dx

∫
2x3dx = 2

∫
x3dx

= 2(
1

4
x4 + C1) by power rule for antiderivatives

=
1

2
x4 + C2, where C2 =

1

2
C1

3.
∫

(ax + bx2)dx

∫
(ax + bx2)dx = a

∫
xdx + b

∫
x2dx

= a(
1

2
x2 + C1) + b(

1

3
x3 + C2)

=
1

2
ax2 +

1

3
bx3 + C3, where C3 = aC1 + bC2

4.
∫

x−1dx

∫
x−1dx =

∫
1

x
dx

= ln x + C

1
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5.
∫

x2+1
x

dx

∫
x2 + 1

x
=

∫
(x +

1

x
)dx

=

∫
xdx +

∫
1

x
dx

= (
1

2
x2 + C1) + (ln x + C2)

=
1

2
x2 + ln x + C3, where C3 = C1 + C2

6.
∫ 1

0
xdx

∫ 1

0

xdx =
1

2
x2 |10

=
1

2
(12 − 02)

=
1

2

7.
∫

1
2x+1

dx

∫
1

2x + 1
dx =

∫
1

2
· 1

u
du using u = 2x + 1, du = 2dx, so dx =

1

2
du

=
1

2

∫
1

u
du

=
1

2
(ln u + C1)

=
1

2
ln u + C2, where C2 =

1

2
C1

=
1

2
ln(2x + 1) + C2



3

8.
∫

x
3x−2

dx

∫
x

3x− 2
dx =

∫ u+2
3

u
du using u = 3x− 2, x =

u + 2

3
, du = 3dx, and dx =

1

3
du

=
1

3

∫
u + 2

u
du

=
1

3
(

∫
du +

∫
2

u
du)

=
1

3
((u + C1) + 2

∫
1

u
du)

=
1

3
((u + C1) + 2(ln u + C2))

=
1

3
(u + 2 ln u + C3), where C3 = C1 + 2C2

=
1

3
(u + 2 ln u) + C4, where C4 =

1

3
C3

=
1

3
(3x− 2) +

2

3
ln(3x− 2) + C4

= x +
2

3
ln(3x− 2) + C5, where C5 = −2

3
+ C4, since

1

3
(3x− 2) = x− 2

3

9.
∫

3x2+1
3x3+3x

dx∫
3x2 + 1

3x3 + 3x
dx =

∫
1

3
· 1

u
du (u = 3x3 + 3x, du = (9x2 + 3)dx, and so

1

3
du = (3x2 + 1)dx)

=
1

3

∫
1

u
du

=
1

3
(ln u + C1)

=
1

3
ln u + C2, where C2 =

1

3
C1

=
1

3
ln(3x3 + 3x) + C2

=
1

3
(ln(3 · x · (x2 + 1)) + C2

=
1

3
(ln 3 + ln x + ln(x2 + 1) + C2 by the product rule for logarithms

=
1

3
ln x +

1

3
ln(x2 + 1) + C3, where C3 =

1

3
ln 3 + C2
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10.
∫

exdx

∫
exdx = ex + C

11.
∫ ln 2

0
exdx

∫ ln 2

0

exdx = ex |ln 2
0

= eln 2 − e0

= 2− 1 since eln f(x) = f(x) = ln ef(x) for any function f(x)

= 1

12.
∫

e3xdx

∫
e3xdx =

∫
1

3
· eudu using u = 3x, du = 3dx, and

1

3
du = dx

=
1

3

∫
eudu

=
1

3
(eu + C1)

=
1

3
eu + C2 using C2 =

1

3
C1

=
1

3
e3x + C2



5

13.
∫ ln 2

0
e3xdx

∫ ln 2

0

edxdx =
1

3
e3x |ln 2

0 using # 12

=
1

3
(e3·ln 2 − e3·0)

=
1

3
(eln 23 − 1)

=
1

3
(8− 1)

=
7

3

14.
∫

x2+xe2x

x
dx

∫
x2 + xe2x

x
dx =

∫
xdx +

∫
e2xdx

=
1

2
x +

1

2
e2x + C

15.
∫

ln x
x

dx∫
ln x

x
dx =

∫
udu taking u = ln x, and du =

1

x
dx

=
1

2
u2 + C

=
1

2
(ln x)2 + C

16.
∫

ln x+1
x

dx∫
ln x + 1

x
dx =

∫
ln x

x
dx +

∫
xdx

=
1

2
(ln x)2 +

1

2
x2 + C
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17.
∫

2xex2
dx

∫
2xex2

dx =

∫
eudu by using u = x2, so du = 2xdx

= eu + C

= ex2

+ C

18.
∫

(3x2 + 2x)ex3+x2
dx

∫
(3x2 + 2x)ex3+x2

dx =

∫
eudu by using u = x3 + x2, so du = (3x2 + 2x)dx

= eu + C

= ex3+x2

+ C

19.
∫

2xexdx

∫
2xexdx = 2

∫
xex

= 2(xex −
∫

ex) using integration by parts, with u = x, and dv = exdx

= 2(xex − ex) + C

20.
∫

2xe2xdx

Note that this is similar to
∫

xexdx, so we’ll want to use in-
tegration by parts. The right choice of variables are

u = 2x dv = e2xdx

du = 2dx v =
1

2
e2x
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So by integration by parts,∫
2xe2xdx =

∫
udv

= uv −
∫

vdu

= 2x · 1

2
e2x −

∫
1

2
e2x · 2dx

= xe2x −
∫

e2xdx

= xe2x − 1

2
e2x + C

21.
∫

x2exdx

We want to use integration by parts here since there is no obvi-
ous candidate for u-substitution, and integration by parts gives
us a way to decrease the exponent on the x2 term, so our first
choice is

u = x2 dv = exdx

du = 2xdx v = ex

So we get that∫
x2exdx =

∫
udv

= uv −
∫

vdu

= x2ex −
∫

2xexdx

= x2ex − 2

∫
xexdx

Note that
∫

xexdx is something we know how to calculate by
integration by parts. In addition, we computed that in problem
19 (with ·2), so∫

x2exdx = x2ex − 2(xex − ex) + C

= x2ex − 2xex + 2ex + C
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22.
∫

x2ex2
dx

This looks a bit ugly, especially with the x2 term, so to ease
the expression a bit, we shall use u-substitution, with u = x2,
to give us ∫

x3ex2

dx =

∫
1

2
ueudu

by noting that du = 2xdx, so 1
2
du = xdx, and splitting x3 into

x2 · x, so we can use u = x2, and xdx for 1
2
du.

Now it is easy to see that we can use integration by parts here,
and by observing that

∫
1
2
ueudu = 1

2
eudu, we see that this is

again very similar to problem 19, so we can calculate this easily:∫
x3ex2

dx =

∫
1

2
ueudu

=
1

2

∫
ueudu

=
1

2
(ueu − eu) + C

=
1

2
(x2ex2 − ex2

) + C

23.
∫ e2

1
ln xdx

We have no rule for calculating this, and it is clear that u-
substitution is worthless in this situation, so we should apply
integration by parts.

In fact, since we have a ln x here, it becomes a prime candi-
date for our choice of u since it’s derivative is something more
managable ( 1

x
), so choosing

u = ln x dv = dx

du =
1

x
dx v = x,
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we get that∫ e2

1

ln xdx =

∫ x=e2

x=1

udv

= uv |x=e2

x=1 −
∫ x=e2

x=1

vdu

= x ln x |e2

1 −
∫ e2

1

x · 1

2
dx

= x ln x |e2

1 −
∫ e2

1

dx

= (x ln x− x) |e2

1

= (e2 ln e2 − e2)− (1 · ln 1− 1)

= (2e2 − e2)− (0− 1)

= e2 + 1

24.
∫

x ln xdx

Similar to problem 23, this is an integration by parts question,
so we set

u = ln x dv = xdx

du =
1

x
dx v =

1

2
x2,

which gives us that∫
x ln xdx =

∫
udv

= uv −
∫

vdu

=
1

2
x2 ln x−

∫
1

2
x2 · 1

x
dx

=
1

2
x2 ln x− 1

2

∫
xdx

=
1

2
x2 ln x− 1

4
x2 + C (we calculated

∫
xdx in problem 6)
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25.
∫

x(3− x)3dx

One way to approach this is to multiply everything out, and
then integrate, but this is a cumbersome method with calcula-
tions that most of you probably would be better off not doing.

The best way to approach a question like this is to use inte-
gration by parts to reduce the exponent to eventually 0 (you
may have to use it multiple times).

The best choice of u is the term with the smallest exponent,
which here is the x term, so we set

u = x dv = (3− x)3

du = dx v = −1

4
(3− x)4

This gives us that∫
x(3− x)3dx =

∫
udv

= uv −
∫

vdu

= −1

4
x(3− x)4 +

1

4

∫
(3− x)4dx

= −1

4
x(3− x)4 − 1

4
· 1

5
(3− x)5 + C

(you can calculate

∫
(3− x)4dx using u-substitution)

= −1

4
(3− x)4(x +

1

5
(3− x)) + C

= −1

4
(3− x)4(

4

5
x +

3

5
) + C

= − 1

20
(3− x)4(4x + 3) + C

26.
∫

(2x + 3)2(3x + 5)3dx

Again, this is integration by parts, and the smallest exponent is
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2, on the 2x + 3 term, so we set

u = (2x + 3)2 dv = (3x + 5)3dx

du = 4(2x + 3)dx v =
1

12
(3x + 5)4

Be sure to remember to use chain rule when calculating du there,
and to use a u-substitution to calculate the antiderivative of dv!

Now we get that

∫
(2x + 3)2(3x + 5)3dx =

∫
udv

= uv −
∫

vdu

=
1

12
(2x + 3)2(3x + 5)4 −

∫
1

12
(3x + 5)4 · 4(2x + 3)dx

=
1

12
(2x + 3)2(3x + 5)4 − 1

3

∫
(3x + 5)4(2x + 3)dx

Note that
∫

(3x + 5)4(2x + 3)dx has the exponent on the 3x + 5
term increased by 1, and the exponent on the 2x + 3 term de-
creased by 1. In general, this is always true in this type of
situation, where the choice of u will have a power decreased by
1 and the choice for dv will have the power increased by 1.

In addition, this is an integral where we can apply integration
by parts again, so we set

u = 2x + 3 dv = (3x + 5)4dx

du = 2dx v =
1

15
(3x + 5)5dx
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This gives us that∫
(3x + 5)4(2x + 3)dx =

∫
udv

= uv −
∫

vdu

=
1

15
(2x + 3)(3x + 5)5 −

∫
1

15
(3x + 5)5 · 2dx

=
1

15
(2x + 3)(3x + 5)5 − 2

15

∫
(3x + 5)5dx

=
1

15
(2x + 3)(3x + 5)5 − 2

15
· 1

18
(3x + 5)6 + C

(

∫
(3x + 5)5dx can be calculated using u-substitution)

So substituting this into the original calculation, we get that∫
(2x + 3)2(3x + 5)3dx =

1

12
(2x + 3)2(3x + 5)4 − 1

3

∫
(3x + 5)4(2x + 3)dx

=
1

12
(2x + 3)2(3x + 5)4 − 1

3
(

1

15
(2x + 3)(3x + 5)5 −

2

15
· 1

18
(3x + 5)6) + K where K is some constant

27.
∫

e
1

x2

x3 dx

This is a u-substitution question.
Note that ( 1

x2 )′ = − 2
x3 , so u = 1

x2 is an obvious choice.

This gives us that∫
e

1
x2

x3
dx =

∫
−1

2
eudu

= −1

2

∫
eudu

= −1

2
eu + C

= −1

2
e

1
x2 + C
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28.
∫

e
1

x5

x6 dx

Again, this is a u-substitution question, where the obvious choice
of u = 1

x5 , which gives us that

∫
e

1
x5

x6
dx =

∫
−1

5
eudu

= −1

5

∫
eudu

= −1

5
eu + C

= −1

5
e

1
x5 + C

29.
∫

1√
6x+5

dx

This is a simpler u-substitution question, with u = 6x + 5 a
good choice, since du = 6dx, so

∫
1√

6x + 5
dx =

∫
1

6
· 1√

u
du

=
1

6

∫
u−

1
2 du

=
1

6
· 2u

1
2 + C

=
1

3

√
6x + 5 + C

30.
∫ (
√

x+1)
1
2√

x
dx

Note that (
√

x + 1)′ = 1
2
x−

1
2 = 1

2
√

x
, so u =

√
x + 1 is a good

choice.
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This gives us that∫
(
√

x + 1)
1
2

√
x

dx =

∫
2u

1
2 du

= 2

∫
u

1
2 du

= 2 · 2

3
u

3
2 + C

=
4

3
(
√

x + 1)
3
2 + C
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Partial Derivatives

Calculate the second partials, including the mixed partials, of the fol-
lowing functions. In addition, evaluate which points are critical points
or saddle points, and determine the relative extrema (relative maxi-
mum or minimum).

1. f(x, y) = x + y

First, we must calculate the first partials in order to do any-
thing for the problem, so

fx = 1 & fy = 1

Note that fx & fy can never be 0, so there are no potential
critical points. This isn’t surprising since you can make f(x, y)
arbitrarily large by plugging in large numbers for x or y.

Calculating the second partials, we get that

fxx = 0 & fyy = 0

fxy = 0

2. f(x, y) = xy

Computing the first partials, we get that

fx = y & fy = x

Setting fx = 0 & fy = 0, we get a critical point of (0, 0) for
f(x, y).

Calculating the second partials, we get that

fxx = 0 & fyy = 0

fxy = 1

This gives us that

D(x, y) = fxxfyy − (fxy)2

= −1

Note that D(x, y) is always negative, so this means that (0, 0)
is a saddle point.
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3. f(x, y) = x2 + 2xy + y2

For the first partials, we get

fx = 2x + 2y & fy = 2x + 2y

Setting fx = 0 and fy = 0, we get that x = −y. This gives us
an infinite set of critical points.

Calculating the second partials, we get

fxx = 2 & fyy = 2

fxy = 2,

giving us that

D(x, y) = fxxfyy − (fxy)2

= 4− 22

= 0,

so this test is inconclusive.

However, note that f(x, y) = (x + y)2 ≥ 0, so when x = −y, the
function is at its minimum.

Along this line though, the surface remains at its minimum,
so any point that satisfies x = −y must be a saddle point.

4. f(x, y) = ex2+y2

For the first partials, we get

fx = ex2+y2 · ∂

∂x
(x2 + y2) fy = ex2+y2 · ∂

∂y
(x2 + y2)

fx = 2xex2+y2

& fy = 2yex2+y2

Setting fx = 0 & fy = 0, we get a critical point of (0, 0), since

ex2+y2
> 0 for any x & y.
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Calculating the second partials, we get

fxx = 2ex2+y2

+ 2x
∂

∂x
ex2+y2

= 2ex2+y2

+ 4x2ex2+y2

= (4x2 + 2)ex2+y2

fyy = 2ex2+y2

+ 2y
∂

∂y
ex2+y2

= 2ex2+y2

+ 4y2ex2+y2

= (4y2 + 2)ex2+y2

fxy = 2xex2+y2 · ∂

∂y
(x2 + y2)

= 4xyex2+y2

This gives us that

D(x, y) = fxxfyy − f 2
xy

= (4x2 + 2)(4y2 + 2)e2(x2+y2) − 4xye2(x2+y2)

Plugging in (0, 0), we get

D(0, 0) = (2)(2)e2·0 − 0

= 4 > 0,

so (0, 0) is a relative maximum or minimum.

Checking fxx, we get that

fxx(0, 0) = 2e0

= 2 > 0

Therefore (0, 0) is a relative minimum.

5. f(x, y) = exy

For the first partials, we get

fx = exy · ∂

∂x
(xy) fy = exy · ∂

∂y
(xy)

fx = yexy & fy = xexy

Setting fx = 0 & fy = 0, we get that (0, 0) is the only critical
point of f(x, y).
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Calculating the second partials, we get

fxx = yexy · ∂

∂x
(xy)

= y2exy

fyy = xexy · ∂

∂y
(xy)

= x2exy

fxy = exy + yexy · ∂

∂y
(xy)

= exy + xyexy

= (1 + xy)exy

This gives us that

D(x, y) = fxxfyy − f 2
xy

= x2y2e2xy − (1 + xy)2e2xy

Plugging in (0, 0), we get

D(0, 0) = 0− (1 + 0)2

= −1 < 0,

so (0, 0) is a saddle point.

6. f(x, y) = xyexy

For the first partials, we get

fx = yexy + xy2exy fy = xexy + x2yexy by the product rule

fx = y(1 + xy)exy & fy = x(1 + xy)exy

Setting fx = 0 and fy = 0, we get that

y(1 + xy)exy = 0 & x(1 + xy)exy = 0

⇒ y(1 + xy) = 0&x(1 + xy) = 0

If xy = −1, then we get an infinite set of critical points of f(x, y).

If x = 0 or y = 0, then 1 + xy = 1, and so both must be
simultaneously 0.
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Therefore we get (0, 0) and (x,− 1
x
) as critical points of f(x,

y), for all non-zero x.

Calculating the second partials, we get

fxx = y(yexy + (1 + xy)yexy)

= y2(2 + xy)exy

fyy = x(xexy + (1 + xy)xexy)

= x2(2 + xy)exy

fxy = (1 + xy)exy + xyexy + xy(1 + xy)exy

= (x2y2 + 3xy + 1)exy

This gives us that

D(x, y) = fxxfyy − f 2
xy

= x2xy2(2 + xy)exy − (x2y2 + 3xy + 1)exy

= (x3y3 + x2y2 − 3xy − 1)exy

Plugging in (0, 0) and (x,− 1
x
), we get

D(0, 0) = −1 < 0

D(x,−1

x
) = (−1 + 1 + 1− 1)e−1

= 0,

so (0, 0) is a saddle point, and this test is indeterminate about
(x,− 1

x
).

7. f(x, y) = ln(x + y)

For the first partials, we get

fx =
1

x + y
& fy =

1

x + y

Notice that it is impossible for fx = 0 and fy = 0, so there are
no critical points
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Calculating the second partials, we get

fxx = − 1

(x + y)2

fyy = − 1

(x + y)2

fxy = − 1

(x + y)2

8. f(x, y) = x ln(3x2y)

Note that we can rewrite this as

x ln(3x2y) = x(ln 3 + ln x2 + ln y)

= x ln 3 + 2x ln x + ln y

For the first partials, we then get

fx = ln 3 + (2 ln x + 2x · 1

x
) fy =

1

y

fx = ln 3 + 2 ln x + 2 & fy =
1

y

Note that fy = 0 is impossible, so we have no critical points for
f(x, y).

For the second partials, we get

fxx =
2

x

fyy = − 1

y2

fxy = 0


