Integration

l.fdx

/ dxr = x4+ C by power rule for antiderivatives

2. f 2x3dx

/ngdm = 2/x3dx

1
= 2(1—1:11:4 + C4) by power rule for antiderivatives

1 1
= §m4 + (5, where Cy = 501

3. [(ax + ba?)dx

/(ax+bx2)dx = a/mdw—i—b/xde

1 1
= a(§x2 +C) + b(§x3 + ()

1 1
= iaxQ + gbxg + C3, where C3 = aC7 + bCy

4. [z 'dx

1
/xld:v = /—dx
T

= lnz+C



5. f %dw

2 1 1
x i
1
= /mdx+/—d$
T
1
— (§g;2+01)+(1n:c+02)
1
— §x2+lnx—|—C’3, where C3 = C + Cy

6. folxdx
1
1
/xda: = -2’
0 2
1
= 5(12—02)
B 1
2
7' f2x1+1dx

1
du using u = 2x + 1, du = 2dz, so dx = Edu

g+

1
dr =
/2x+1x

—
\[\'}IH
SIS

QL

N

(lnu + 01)

N~ RN~ N

1
= —Inu+ Cy, where Oy = 501

1
= 5111(2:5 +1)+C,



/

/

8. f 3;;—

3r — 2

2

dx

= S _duusing u =3r — 2, v =
u
1 fu+2
= = d
3/ U Y
1 2
1

— —((u—l—C’l)—i—Q/adu)

dx

, du = 3dz, and dx = %du

1
3

— 1((u +C1) +2(Inu+ Cy))

3

1
= —(u+2Inu+ C5), where C3 = C 4 205

3

1 1
= g(u—I— 2Inu) + Cy, where Cy = gC’g

1

= (3x—2)+§1n(3x—2)—|—04

2 9 )
= r+ gln(&x —2) + Cs, where C5 = —3 + (Y}, since 5(333 —2)=x— =

9. f 322+1

3z3+3x

322 +1

3x3 + 3z

dz

3

dx

1
du (u = 32" + 3z, du = (92* + 3)dx, and so gdu = (32° + 1)dx)

S

I
\
\O\DM—‘
.
U
N

(Inu+ Ch)

Wl W~ W+~

1
= —Inu+ Cy, where Cy = 501
1
= 3 In(32° + 3z) + Cy
1
- 5(1n(3 x- (2% 4 1)) + Cy

1
= §(1n3 +1Inx + In(z® 4+ 1) + Cy by the product rule for logarithms

1 1 1
= §lnyc—l— gln(:zzz—l— 1) + C3, where C5 = §1n3+02



10. [e*dx

/exd:c = &+ C

In2 .
11. [, e*da
In2
/ efdr = " |P?
0
— eln2 _ 60

— 2 — 1 since ™/ = f(z) = Ine/@ for any function f(z)
=1

12. [e¥*dx

1 1
/e?”cda: = /§~e“du using u = 3z, du = 3dx, and gdu:da:
1
— [ e“du
3
1 u
= g(e —|-01)
= “ + Oy using C: 10
= —e usin = -
3 2 g L2 3v1

13
= —e* 4+ (!
3¢ 2



In2
1
/ ePdr = —e* |"? using # 12
0

3

_ %(63-1n2_e3-0)
1

_ g(eln23_1)
1

= 36-1

T

-3

14. [ 2o gy

2 2z
/Hidx = /:cd:v+/62xdx
T
1

1 2x
= Zg4- C
gt e

15. f lnTIdx

1 1
Bl = /udu taking u = Inz, and du = —dx

A a

1

= §U2+C
1 2

= —(lnz)*+C
P

16. [ itldy
1 1 1
/MJr dr = ﬂdwr/xdx
X X

1 1
_ _1 2 ~ 2
2(n:zc) 357 +C



17. [ 22 dx

/2xez2dx = /eudu by using u = 22, so du = 2zdx

= e+ C
= ¢ +C

18. [(32% + 2x)e*" " dx

/(3x2 +20)e” t dr = /e“du by using u = 2* + 2%, so du = (32* + 2x)dx

= e“+C
L O
19. f 2xedx
/erxdx = 2 / xre®
= 2(xe” — [ €) using integration by parts, with u = 2, and dv = e*dx
= 2(xze” —e")+C

20. f 2xe?*dx
Note that this is similar to f retdr, so we’ll want to use in-

tegration by parts. The right choice of variables are

u =2 dv = e**dx

1
du = 2dz v = 56296



So by integration by parts,

/ 2we®dr =

21. f:L‘Qe‘”dx

/udv
UV — /vdu

1 1
2 - §e2x — / 56% - 2dx

re?® — / e dx

1
:L_GQ;U . 562$+C

We want to use integration by parts here since there is no obvi-
ous candidate for u-substitution, and integration by parts gives
us a way to decrease the exponent on the z? term, so our first

choice is

u =z’
du = 2zdx

= /udv
= uv—/vdu

= l‘2€x—/2$6$dl‘

= 2%e* — 2/:669661.%

So we get that

/xQszx

dv = e*dx

v=¢"

Note that [ ze®dz is something we know how to calculate by
integration by parts. In addition, we computed that in problem

19 (with -2), so

/xQexdx =

e — 2(xe” —e*) + C

22e® — 2xe” + 2% + C



22. f 226 dx

This looks a bit ugly, especially with the z? term, so to ease

the expression a bit, we shall use u-substitution, with © = 22,

to give us

by noting that du = 2xdx, so %du = xdx, and splitting 2® into
2? -z, so we can use u = 2%, and zdz for 1du.

Now it is easy to see that we can use integration by parts here,
and by observing that [ %ue“du = %e“du, we see that this is
again very similar to problem 19, so we can calculate this easily:

1
/x?’exzdx = /gue“du

23. ffz In zdx

We have no rule for calculating this, and it is clear that u-
substitution is worthless in this situation, so we should apply
integration by parts.

In fact, since we have a Inx here, it becomes a prime candi-
date for our choice of u since it’s derivative is something more
managable (1), so choosing

u=Inzxr dv=dx

1
du=—dxr v=nu,
x



we get that

2 2

/ lnzdx = / udv
1 r=1

24. [zlnzdx

Similar to problem 23, this is an integration by parts question,
so we set

u=Inx dv = xdx

1 1
du=—dr v=—a>
x 2

I

which gives us that

/azlnxda: = /udv
= uv—/vdu
1, 1,1
= 2:5 lnx—/Qx xd:c
1 1
= —x21nx——/xdx

2 2
1, 1, _
= 3% Inx — 2% + C (we calculated | xdz in problem 6)
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25. [x(3 —z)%dx

One way to approach this is to multiply everything out, and
then integrate, but this is a cumbersome method with calcula-
tions that most of you probably would be better off not doing.

The best way to approach a question like this is to use inte-
gration by parts to reduce the exponent to eventually 0 (you
may have to use it multiple times).

The best choice of u is the term with the smallest exponent,
which here is the x term, so we set

u=z dv=3—2z)

1
du = dz ’U:—Z(?)—:L')4

This gives us that

/x@—xfm:: /um

_ Laoora [3o e

= 4x(3 ) +4/(3 x) dx
1 11

= —Z—L:E(3—x)4——-—(3—x)5+0

(you can calculate / (3 — z)*dx using u-substitution)

| L1

= —1(3—x) (x+g(3—x))+0
1 L4 3

= —1(3—x) (5x+5)+0

= —%(3—3:)4(4x+3)+0

26. [(2z + 3)*(3z + 5)*dx

Again, this is integration by parts, and the smallest exponent is
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2, on the 2x 4 3 term, so we set

u=(2z+3)*> dv=(3z+5)%dx

1
du =42z +3)dz v= E(?)x + 5)*

Be sure to remember to use chain rule when calculating du there,
and to use a u-substitution to calculate the antiderivative of dv!

Now we get that

/(23: +3)*(3z +5)°de = /udv

= uv—/vdu

= i(Q:U +3)%(3z + 5)* — / i(396 +5)* - 4(2x + 3)dx

12 12
1 1
= SO+ +5) - /(Sx 520 + 3)da

Note that [(3z + 5)*(2z + 3)dz has the exponent on the 3z + 5
term increased by 1, and the exponent on the 2z + 3 term de-
creased by 1. In general, this is always true in this type of
situation, where the choice of u will have a power decreased by
1 and the choice for dv will have the power increased by 1.

In addition, this is an integral where we can apply integration
by parts again, so we set

u=2x+3 dv= 3z +5)dz
1
du=2dx v= 1—5(33: + 5)°dx
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This gives us that

/(Sx +5)* 2z + 3)dr = /udv

= uv—/vdu

1 1
= —(2 b | — 5.2
15( z+3)(3x + 5) /15(31:—1-5) dx
_ 1 5 2 5
= 15(2x+3)(3x+5) 5 /(3x+5) dx
— 1(2 +3)(3z + 5)° 2 1(3 +5)°+C
BT A v 15 18"

(/(3x + 5)°dz can be calculated using u-substitution)

So substituting this into the original calculation, we get that

1 1
/(23; +3)*(3x +5)%dr = E(?x +3)*(3z +5)* — 3 /(3x +5)*(2x + 3)dx
= i(2:16 +3)2(3x +5)* — l(i(m‘ +3)(3z +5)° —
12 3415
2 1
T 1—8(3x +5)%) + K where K is some constant

27. [ e%d:r

This is a u-substitution question.
Note that (=5)" = —Z, so u = =5 is an obvious choice.

This gives us that

—
[
&w “N\H
QU
&
|
\
|
| —
9]
IS
QU
N

N RN~ N~

—_—
)
=
QU
<

e +C

N
_I_
Q
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Bl
28. [ &dx

Again, this is a u-substitution question, where the obvious choice
of u = z%, which gives us that

\
&@L‘;

S

I
\

|
\Cﬂlr—t
o e
=S
S =

|

QY — Ot~ Ol —
o
'1'_‘ g
+
Q

3
+
a

1
29. [ mdz

This is a simpler u-substitution question, with u = 6x + 5 a
good choice, since du = 6dx, so

-

\ | =
QI .
ol
QU
<

[\
S
+
Q

6x+5+C

=)
K| —
+
ot
IS
8
Il
Wl o = @IH\

1
30. [ WE dy

Note that (y/z + 1) = %x_% = ﬁi’ sou = /x + 1 1is a good
choice.
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This gives us that

/(ﬁ\/;l)idjj

+C
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Partial Derivatives

Calculate the second partials, including the mixed partials, of the fol-
lowing functions. In addition, evaluate which points are critical points
or saddle points, and determine the relative extrema (relative maxi-
mum or minimum).

L f(zy)=a+y

First, we must calculate the first partials in order to do any-
thing for the problem, so

=1 & f,=1

Note that f, & f, can never be 0, so there are no potential
critical points. This isn’t surprising since you can make f(x,y)
arbitrarily large by plugging in large numbers for x or y.

Calculating the second partials, we get that

fa:x:O & fyyzo
fzy:O

2. f(x,y) =zy

Computing the first partials, we get that

f:c =Y & fy =T
Setting f, = 0 & f, = 0, we get a critical point of (0, 0) for
f(z,y).

Calculating the second partials, we get that
foz =0 & fu, =0
fzy =1
This gives us that
D(x,y) = Joafyy — (fxy)2
= -1

Note that D(x,y) is always negative, so this means that (0, 0)
is a saddle point.
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3. fx,y) = 2 + 2zy + ¢*

For the first partials, we get
fo=20+2y & f,=2x+2y

Setting f, = 0 and f, = 0, we get that + = —y. This gives us
an infinite set of critical points.

Calculating the second partials, we get

foz =2 & fyy =2
f:r:y:27

giving us that

D(Iay) = fzxfyy_(fzy)Q
= 4-22
= 0,

so this test is inconclusive.

However, note that f(z,y) = (z+y)? > 0, so when z = —y, the
function is at its minimum.

Along this line though, the surface remains at its minimum,
so any point that satisfies x = —y must be a saddle point.

flzy) =

For the first partials, we get

2 2 a 2 2 8
fo=e"T (@ 4y fy =t 'a—y($2+y2)

fo =226t & f, = 2ye” Y

Setting f, = 0 & f, = 0, we get a critical point of (0, 0), since
I2+ 2
e’ >0 for any x & y.



Calculating the second partials, we get

24,2 0 2.2
fzz = 2¢e” ty + 2x—¢€" Y

oz
2 2 2 2
= 20TV 4 4g2e™ Y

= (4a? +2)e” Y

0
foy = 26x2+y2+2y_€x2+y2

dy
— 2€x2+y2 + 4y2€x2+y2

= (dy? +2)e”

2 2 a
Joy = 2ze™ V. a—y(a:2 +97)

= Adgye” Y’
This gives us that
D(z,y) = foalyy — fa:2y
= (422 4 2)(4y? + 2)2THY) _ 4gye=*+7)
Plugging in (0, 0), we get
D(0,0) = (2)(2)e*" -0
4 >0,

so (0, 0) is a relative maximum or minimum.

Checking f,., we get that
fez(0,0) = 2¢°
= 2>0

Therefore (0, 0) is a relative minimum.

- f(r,y) = e

For the first partials, we get

0

. —(x —ezy~2x

fo=ye & f,=ae

17

Setting f, = 0 & f, = 0, we get that (0, 0) is the only critical

point of f(x, y).
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Calculating the second partials, we get

0
fCEI = yem”%(l‘y)

— y2 ery

foy = xe™ - —(xy)

foy = € +ye™- a%(xy)

= e+ xye™

— (1 +ay)e”
This gives us that

D(z,y) = Seafyy — a?y

— 222 (1 4 ay)2e

Plugging in (0, 0), we get
D(0,0) = 0—(1+0)?

= —-1<0,
so (0, 0) is a saddle point.
6. f(z,y) = zye™
For the first partials, we get
fo = ye™ + zye™ f, = ve™¥ + x*ye™ by the product rule

o=yl +ay)e™” & f,=x(1l+zy)e™
Setting f, = 0 and f, = 0, we get that
y(l4+zy)e™ =0 & z(l+zy)e™ =0
= y(1+zy) = 0&z(1+2y) =0

If xy = —1, then we get an infinite set of critical points of f(x, y).

If x =0ory =0, then 1 + 2y = 1, and so both must be
simultaneously 0.
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Therefore we get (0, 0) and (x,—1) as critical points of f(x,
y), for all non-zero x.

Calculating the second partials, we get

Jee = yye™ + (1 + zy)ye™)
= y(2+ay)e™

fo = w(@e™ 4 (1+ zy)ze™)
= 232+ ay)e™

foy = (L+ay)e™ + zye™ + vy(1 + zy)e™
= (2*y* + 3zy + 1)e™

This gives us that
D(z,y) = foafy — jy

= 2%2*(2 + 2y)e™ — (2% + 3wy + 1)e™
= (2% +2%y® — 3zy — 1)e™

Plugging in (0, 0) and (z, —1), we get
D(0,0) = —1<0
1 -1
D(z,——) = (-14+1+1-1)e
T

= 0,

so (0, 0) is a saddle point, and this test is indeterminate about
(:IZ‘, _%)

- f(z,y) = In(x +y)

For the first partials, we get

1 1

fm:x+y fy:x+y

Notice that it is impossible for f, = 0 and f, = 0, so there are
no critical points
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Calculating the second partials, we get

1
fo = @y

1
e

1
b = Gy

8. f(z,y) = zIn(3x%y)

Note that we can rewrite this as
rIn(3z%y) = x(In3+Ina* +Iny)
= zln3+2zlnz+Iny
For the first partials, we then get

1 1
fe=I3+ 2Inzr+2z--) fy=-
T Y
1
fe=mm3+2Inzx+2 & f,=-
Yy
Note that f, = 0 is impossible, so we have no critical points for
f(x, y).
For the second partials, we get
2
f:m: = -
x
1
fw = —=
vy yQ

fzy:O



