Name:

Directions: Show all work. No credit for answers without work.

- 1. [3 parts, 1 point each] True/False. Justify your answers.
 - (a) There is a vector $\mathbf{u} \in \mathbb{R}^n$ such that for each vector $\mathbf{v} \in \mathbb{R}^n$, we have $\mathbf{u} \in \operatorname{Span}\{\mathbf{v}\}$.

(b) If \mathbf{u} and \mathbf{v} are both linear combinations of the vectors $\mathbf{a}_1, \dots, \mathbf{a}_p$, then so is $\mathbf{u} + \mathbf{v}$.

(c) For all vectors \mathbf{u} and \mathbf{v} , we have that $\mathrm{Span}\{\mathbf{u}\}=\mathrm{Span}\{\mathbf{v}\}$ implies $\mathbf{u}=\mathbf{v}$.

2. [1 point] Determine if **b** is in the span of $\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}$ where $\mathbf{a_1} = \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}, \mathbf{a_2} = \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix}$,

$$\mathbf{a_3} = \begin{bmatrix} 1 \\ 6 \\ 19 \end{bmatrix}$$
, and $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

3. [2 parts, 3 points each] Given A and b below, solve for x in the matrix equation Ax = b.

(a)
$$A = \begin{bmatrix} 5 & 3 & -1 \\ 0 & 1 & -2 \\ -2 & 1 & 1 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 31 \\ -8 \\ -15 \end{bmatrix}$.

(b)
$$A = \begin{bmatrix} 2 & -1 & 2 \\ 1 & 0 & 2 \\ 3 & -1 & -1 \\ 4 & 1 & 0 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 23 \\ 13 \\ 11 \\ 5 \end{bmatrix}$.