Directions: Solve 5 of the following 6 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

- 1. Determine the smallest m such that every 2-connected graph with n vertices has a 2-connected spanning subgraph with at most m edges.
- 2. Let G be a graph whose odd cycles are pairwise intersecting, meaning that every two odd cycles in G have a common vertex. Prove that $\chi(G) \leq 5$.
- 3. Let G be a graph not containing a 4-cycle. Prove that $\chi(G) \leq \alpha'(G) + 2$.
- 4. Let t be a nonnegative integer. For each n with $n \ge 5t$, construct an n-vertex graph with chromatic number n 2t and clique number n 3t.
- 5. Let G be a graph with no induced copy of the claw $(K_{1,3})$.
 - (a) Show that in a proper coloring, each subgraph of G induced by the union of two color classes consists of paths and even cycles.
 - (b) An *equitable* coloring of a graph is a proper vertex-coloring in which every pair of color classes differs in size by at most 1. Prove that G has an equitable coloring that is optimal (i.e. uses just $\chi(G)$ colors).
- 6. Let G be a graph with no induced copy of P_4 , let $k = \omega(G)$, and let σ be an ordering of V(G). Prove that with respect to σ , the greedy algorithm produces a proper k-coloring of G. Hint: show that if a vertex u receives color j, then u completes a j-clique with vertices of colors $\{1, 2, \ldots, j\}$ that precede u in σ .