Directions: Solve 5 of the following 6 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

- 1. Let d_1, \ldots, d_n be positive integers with $n \ge 2$. Prove that there exists a tree with vertex degrees d_1, \ldots, d_n if and only if $\sum_{i=1}^n d_i = 2n 2$.
- 2. For $n \ge 4$, let G be an n-vertex graph with at least 2n-3 edges. Prove that G has two cycles of equal length.
- 3. Determine with proof $ex(n, P_n)$, the maximum number of edges in an *n*-vertex graph that does not contain a spanning path.
- 4. (a) Prove that every connected graph has an orientation in which the number of vertices with odd outdegree is at most 1. (Hint: consider an orientation with the fewest number of vertices with odd outdegree.)
 - (b) Use part (a) to conclude that every connected graph with an even number of edges has a P_3 -decomposition.
- 5. Let G be a directed graph without loops. Prove that G has an independent set S such that every vertex in G is reachable from a vertex in S by a directed path of length at most 2. Hint: use induction on |V(G)| and recall that the induction hypothesis applies to all graphs with fewer vertices, not just graphs with |V(G)| - 1 vertices.
- 6. Counting in tournaments. Let T be an n-vertex tournament.
 - (a) Prove that T has $\binom{n}{3} \sum_{v \in V(T)} \binom{d^+(v)}{2}$ (directed) 3-cycles.
 - (b) For odd n, prove that there is an n-vertex Eulerian tournament.
 - (c) For odd n, determine the maximum possible number of 3-cycles in an n-vertex tournament.