Name: Solutions

Directions: Show all work. Answers without work generally do not earn points.

1. [4 parts, 3 points each] Let $\Sigma = \{0,1,2\}$. Define the following languages.

 $A = \{w \mid \text{the symbols of } w \text{ are in sorted order (non-decreasing from left to right)}\}$

 $B = \{w \mid w \text{ has more 1's than 0's}\}$

 $C = \{w \mid \text{the symbols of } w \text{ can be split into two groups whose sums are equal}\}$

For example: λ and 01201 are both words in C (we can split 01201 into two groups with equal sum by putting both one's in the first group and the remaining symbols in the second group), and 1211 $\notin C$ (no split is possible).

(a) Give an example of a string in $A \cap B \cap C$.

(c) True or False: $A \cap B \subseteq C$.

- False: 1 EANB but
- (b) Give an example of a string in A B.
- (d) True or False: BB = B.

- FAUSE: 101 € B but 101 € BB.
- 2. [4 points] Let $\Sigma = \{0\}$. Find all languages over Σ that are computable by DFAs with at most 2 states.

One state: > 8 or > 8 giving & and 5*

Two states: > OFO or > OFO gring (w. whas even leyth)

and {w. whas odd length}

So there are 6 languages: 0, \$\frac{\pmu}{2}, \{\omega: \pmu\} \{\omega: \pmu\}, \{\

- 3. [4 parts, 4 points each] Let $\Sigma = \{a, b\}$. Construct DFAs for the following languages.
 - (a) $\{w \mid w \text{ has at least two } a\text{'s}\}$

(c) $\{w \mid \text{the length of } w \text{ is divisible by } 3\}$

(b) $\{w \mid w \text{ has no pair of consecutive } b$'s $\}$

(d) $\{w \mid w \text{ ends with } ab\}$

Keep track of last two symbols. Appropriate Start state: bb

4. Let $\Sigma = \{a,b\}$ and define the following languages.

$$A_1 = \{(ab)^n \mid n \ge 0\} = \{\lambda, ab, abab, ababab, \ldots\}$$

$$A_2 = \{w \mid w \text{ has an odd number of } a\text{'s}\}$$

(a) [5 points] Give a simplified DFA for A_1 .

(b) [5 points] Give a simplified DFA for A_2 .

(c) [8 points] Give a DFA for $A_1 \cup A_2$.

use product construction.

O event a's

Redrawn.

Better drawing.

5. [4 parts, 4 points each] Let $\Sigma = \{a, b, c\}$. For each string $w \in \Sigma^*$, let #a(w), #b(w), and #c(w) denote the number of a's, b's, and c's in w. Define the following languages.

 $A = \{w \mid w \text{ contains a consecutive pair of } a$'s}

 $B = \{w \mid \#b(w) = 1 \text{ and the single } b \text{ in } w \text{ is the second to last symbol}\}$

 $C = \{w \mid \text{the 3-tuple } (\#a(w), \#b(w), \#c(w)) \text{ contains at least one even integer}\}$

Give NFAs for the following using at most the specified number of states.

(a) A, at most 3 states

01

(b) B, at most 3 states

(c) AB, at most 5 states

IDEA: NFA Spirts ward into

(d) C, at most 7 states

IDEA: Gress whether the a's, b's, c's will be even and sheck.

6. Let $\Sigma = \{a, b\}$ and let N be the following NFA (below left).

State	a	b .
1	1,2,4	2,3,4
2	4	Ø
3	1,2,3,4	3,4
4	3,4	3,4.

- (a) [8 points] For each state/input pair, give the set of successor states in the table above.
- (b) [6 points] Convert N to a DFA.

(c) [4 points] Simplify your DFA above. Use your simplified DFA to give a simple description of the language computed by N.

L(N)= {w: w does not end in ab}

7. [16 points] Let $\Sigma = \{a, b\}$ and define the following languages.

 $A = \{w \mid w \text{ starts and ends with an } a\}$

 $B = \{ w \mid w \text{ has an even length} \}$

Note that $\lambda \notin A$ but $a \in A$. Give a simplified DFA that computes the language BA.

8. [4 bonus points] Let $\Sigma = \{0, 1, 2\}$ and recall the language C from problem (1), where

 $C = \{w \mid \text{the symbols of } w \text{ can be split into two groups whose sums are equal}\}.$

Is the language C regular? Justify your answer.

Regular. Let $C_1 = \{w \mid sum of symbols in wis even}\}$ and let $C_2 = \{w \mid w \in \{0,2\}^{*}\}$ and w has an odd number of two 2's $\}$. One can show that $C = C_1 - C_2$. Since C_1 and C_2 are regular, by closure properties of DFAs, C is also regular.

A DFA for C2.

A DFA for C, C=C,-C2:

Suplify

