Math375 Test 1 September 10, 2015

Name: S b}(ﬂWM/S

Directions: Show all work. Answers without work generally do not earn points. Unless stated
otherwise, answers may be left in terms of factorials and binomial coefficients.

1. [4 points] A restaurant offers 7 different sandwiches, 5 sides, 6 soups, and 3 desserts. The
lunch special consists of a sandwich, a choice of 1 side or a soup (but not both), and a dessert.
How many ways are there to order the lunch special?
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2. [4 points] How many ways are there to distribute 35 identical gold coins among 8 people?
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3. [2 parts, 4 points each] How many 5-digit ATM pins:

(a} contain only even digits?
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{b) contain at least one odd digit?
5 pid = (s b o )

(05 = 3125 t¥X




Math375 Test 1 September 10, 2015

4. [3 parts, 4 points each] A game system has 4 buttons in different colors: red, green, blue,
and yellow. The buttons must be pressed one at a time, in some order. To win the game,
each button must be pressed twice. How many ways are there to win:

{a) with no additional restrictions?
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{(b) if the green presses must occur consecutively?
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(¢) if both red presses must occur before both blue presses?
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[3 parts, rFomts each| Word arrangements. How many ways are there to arrange the

letters of ‘A ? ?l) li{,fA

(a) with no additional restrictions.
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{bb) witg';;)\;wo consecutive P’s.
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(c) with all P’s separated by at least 2 letters. (So PAAPROPRITE counts but PAPROPRIATE
does not.
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6. Poker hands. Recall that a deck of cards has 4 suits (clubs, diamonds, hearts, and spades)
and 13 ranks (ace, 2 through 10, jack, queen, and king}. There are 52 cards (one for each
suit/rank pair). A poker hand is a set of 5 cards (order does not matter). The face cards are
the cards whose rank is jack, queen, or king,.

(a} [4 points] How many poker hands have no face cards?
- 34 =12 ( “0 Y -
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(b} [1 point] What are the odds of being dealt a poker hand with no face cards? Round
your answer to the nearest decimal percentage of the form zz.zz%.
| 65 %, 008 653,008 f’ﬁ
(Z)  293%0
(c) [4 points] How many hands have 3 cards in one suit and 2 cards in a different suit?
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(d) [4 points] How many hands have all distinct ranks and at least 1 card in each suit?
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7. [6 parts, 3 points each] Count the non-negative integer solutions to z3 + --- + x5 = 40

(a) with no additional restrictions.

o e o

(b) with z; > 3 for all 4.
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(d) with x4 = 20 and x5 = 10
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(e) with z4 = 20 or zs = 10 (or both)
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8. {3 parts, 4 points each] Find the coefficient:

(a) of 2%y° in (z +y)°

(b) of 23y25 in (z +y+ 2)12
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9. [2 parts, 4 points each] Give simple formulas for the following sums:
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10. [2 parts, 4 points each] Lattice Paths. Recall that a step in a lattice path increases one of
the coordinates by 1.

(8,5)

(3.3) 4,3}

(0,0

(a) How many lattice paths are there from (0,0) to (8,5)7
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(b) How many of these paths avoid the segment from (3,3) to (4,3) (depicted above with a

dashed line segment)?
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11. [4 points] Lattice paths in 8 dimensions. In 3 dimensions, a step in a lattice path moves
from (z,y, ) to one of the following points: {z+1,y,2), (z,y+1,2), (z,y,z+1). How many
lattice paths are there from (0,0,0) to (n,n,n)? Hint: apply the method that allowed us to

count 2-dimensional lattice paths.
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