Name: Solutions

Directions: Show all work. No credit for answers without work.

- 1. [4 parts, 1 point each] True or False? Write the whole word. (No work necessary.)
 - (a) For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
 - (b) For all sets A and B, it is the case that $A \times B = B \times A$.
 - (c) For all sets A and B, it is the case that $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$. False
 - (d) For all sets A and B, it is the case that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$. True
- 2. Let A be the set of all finite subsets of \mathbb{N} . (Recall $\mathbb{N} = \{0, 1, 2, 3, ...\}$). For example, $\{4, 8, 10\} \in A$ and $\{3, 6, 9, 12, 15, 18\} \in A$.)
 - (a) [2 points] Show that A is countable by describing, in English sentences, a way to list the elements of A.

AH. Soln!
We can also list the sols
of A according to their elements.

List the sets according to their maximum elements

(Since & does not have a maximum element, we list it first.)

of their elements. There are 2k subsets of IN with maximum element k, and since this is finite every set in A eventually appears on the list.

(b) [1 point] In addition to the English description in part (a), explicitly give the first 10 elements of A in your list.

 $A = \{0, \frac{203}{213}, \frac{213}{213}, \frac{20}{13}, \frac{223}{10,23}, \frac{20}{213}, \frac{20$

- 3. [3 parts, 1 point each] Let A be the set of all subsets of $\{1, 2, 3, \ldots, n, n+1\}$ of size 3.
 - (a) Determine |A|.

$$|A| = \left[\binom{n+1}{3} \right]$$

(b) For $k \leq n$, let B_k be the number of subsets of $\{1, 2, 3, \ldots, n, n+1\}$ of size 3 whose maximum element equals k+1. (For example, $\{2, 3, 7\} \in B_6$ and $\{1, 4, 7\} \in B_6$ since both sets have 7 as their maximum.) Determine $|B_k|$.

To form elts in Bk, select a pair fran 21,2,-,k3

and show that were add kell as a member to Complete the triplet.

$$S_0$$
 $|B_k| = |\binom{k}{2}|$

(c) Give a simple formula for $\sum_{k=0}^{n} {k \choose 2}$.

By role of som, $|A| = \sum_{k=0}^{\infty} |B_k|$. So: $\sum_{k=0}^{\infty} {k \choose 2} = \sum_{k=0}^{\infty} |B_k| = |A| = \left[{n+1 \choose 3} \right]$