Name: Solution

Directions: Show all work. No credit for answers without work.

1. Let G be the following graph.

(a) [1 point] What is the degree of u_5 ?

(b) [2 points] Compute $\sum_{v \in V(G)} d(v)$.

$$\leq \frac{1}{2} d(w) = 2|E(G)| = 2.11 = [22]$$
11 edges in G

(c) [1 point] Show that the 6-cycle C_6 is a subgraph of G. Many answers, such as:

u, us uz uz u4 U6

U, U2 U5 U3 U4 U6

U1 U2 U3 U5 U4 U6

etc .__

(d) [2 points] Find two vertex-disjoint 3-cycles in G.

or

- 2. [2 parts, 2 points each] Let $\Sigma = \{a, b\}$. Let A be the language $\{w \mid w \text{ has an even number of } a's\}$ and let B be the language $\{w \mid w \text{ has an odd number of } b's\}$.
 - (a) Give an NFA for AB. Make your NFA as simple as possible.

(b) Convert your NFA to a DFA and then simplify.

Stale	a	<u>b</u>
	23	134
-2	13	2
3	3	14
4	4	3

Simplified:

