Directions: You may work to solve these problems in groups, but all written work must be your own. **Show your work**; See "Guidelines and advice" on the course webpage for more information.

- 1. Show that when any edge is removed from K_5 , the resulting subgraph is planar. Is this true for $K_{3,3}$?
- 2. Let G be a connected planar graph (without loops or parallel edges). One way of embedding G in the plane creates 53 regions, each of which has at least five edges on its boundary. Prove that G has at least 82 vertices.
- 3. Let G be a connected planar graph (without loops or parallel edges).
 - (a) The complement of G, denoted \overline{G} , is the graph on V(G) where u and v are adjacent in \overline{G} if and only if they are non-adjacent in G. Prove that if $|V(G)| \ge 11$, then G or \overline{G} is nonplanar. Hint: count edges in G and \overline{G} .
 - (b) Find an 8-vertex graph G such that G and \overline{G} are planar.