Name:

Directions: Show all work. No credit for answers without work. Unless specifically asked for a numerical answer, you may leave your answers in terms of exponentials, factorials, permutation numbers, and binomial coefficients.

- 1. [4 points] Determine the number of non-negative integral solutions to the following.
 - (a) $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 80$, with $x_3 \ge 8$.

solus to
$$x_1 + \dots + x_6 = 72$$
; $x_{1,1}x_{2,1} \dots x_6 \ge 0$
 $\Rightarrow 72 \text{ stors}, 5 \text{ bars} \Rightarrow \boxed{(75)} = \boxed{(9,757,815)}$

(b) $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 80$, with $x_3 \ge 8$ and $x_5 \le 50$.

Take (a) and subtract #solus with $x_3 \ge 8$ and $x_5 \ge 51$:

solus to $x_1 + \cdots + x_k = 21$, $x_1, \cdots, x_k \ge 0$ $\Rightarrow 21$ stars, 5 bars $\Rightarrow (\frac{26}{5})$ Answer: $(\frac{72}{5}) - (\frac{26}{5})$ $\Rightarrow 10, 100$

2. [3 points] A company wishes to order s sandwiches for their annual party from a menu that lists k types of sandwich. How many ways are there for the company to complete its order?

3. [3 points] Find $\mathcal{P}(\{1,2,3\})$.

Note: this question asks for the set $P({\{1,2,3\}})$, not its size $|P({\{1,2,3\}})|$.