Name: Solutions

Directions: Show all work. No credit for answers without work.

- 1. [2 parts, 2 points each] Consider the group (\mathbb{Z}_7^*, \odot) where $x \odot y = xy \mod 7$.
 - (a) Construct the operation table for the group.

		2	3	4	5	6
	1	2		4	5	6
2	2	4	6		3	5
3	3	6	2	5	Q)	4
4		. Library	5	2	6	3
5	15	3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6	@4	2
6		5	4	3	2	

(b) What is the inverse of 3?

Since 365=1, of 3.

- 2. Let $W = \mathbb{Z}_2^3$ and let $E \colon W \to \mathbb{Z}_2^9$ be the encoding function which repeats a message 3 times, so that E(w) = www. Let $D \colon \mathbb{Z}_2^9 \to W$ be the corresponding decoding function. The channel flips bits with probability p = 0.20.
 - (a) [1 point] If the received codeword is r = 100110010, find the decoded message D(r).

(b) [1 point] In part (a), what can you say about the number of errors that occurred during transmission?

(c) [2 points] If a message w in W is transmitted without encoding, what is the probability that w is received without error?

$$(1-p)^3 = (0.8)^3$$

$$= [0.512]$$

(d) [2 points] What is the probability that a transmission is successful with the encoding scheme?

Prob(first bit decoded correctly) =
$$Pr(4 + bit flip in a - b - c -)$$

= $(1-p)^3 + 3p(1-p)^2 = 0.896$
Pr(all bits decoded correctly) = $((1-p)^3 + 3p(1-p)^2)^3$
= $(0.896)^3 \approx [0.7193]$