1. [2 points] How many equivalence relations are there on $\{1, 2, 3\}$?

2. [2 points] A 6-slot database uses a hasing strategy to store numbers; the hash function is $h(x) = x \mod 6$. Initially, the database is empty. Show a picture of the hash table after the numbers 843, 145, 1932, 533, 204 are inserted in the given order. Collisions are resolved by linear probing.

3. [2 points] Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. We consider permutations on A. (a) Let $f = (2\ 5\ 4\ 7\ 1) \circ (2\ 7\ 4\ 2)$. Express f as the disjoint union of cycle permutations.

(b) Find the inverse f^{-1} in tabular form.

$$f^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 3 & 5 & 4 & 6 & 7 & 2 \end{pmatrix}$$

4. [2 points] Decide whether the given functions are one-to-one/injective, onto/surjective, or bijective. For each blank cell in the table, write "Yes" if the function has the property, and "No" otherwise. You do not need to show your work.

In the following, let A^* be the set of finite strings of a's and b's. For example, aaba, bb, and the empty string λ are all in A^* . Recall that $\mathbb{N} = \{0, 1, 2, \ldots\}$ and \mathbb{Z} is the set of integers.

Function	one-to-one	onto	bijective
$f: \mathbb{Z} \to \mathbb{Z} \text{ where } f(x) = x + 6$	Yes	Yes	Yes
$f: \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x^2 - 1$	No	No	No
$f: \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x^3 - 1$	Yes	100 No	W No
$f \colon A^* \to \mathbb{N}$ where $f(x)$ equals the length of x	No	Y2	No
$f \colon A^* \to A^* \text{ where } f(x) = xx$	Yes	Νυ	No
$f \colon A^* \to A^*$ where $f(x)$ equals the reverse of x	Yes	Yes	Yes

5. [2 points] In RSA, let p=47 and q=43. Then n=2021 and $\phi(n)=1932$. Pick e=541. Use the Euclidean algorithm to find the value of d.

Want: d'.541 + f. 1932 =1

$$1932 = 3.541 + 309$$

 $541 = 1.309 + 232$
 $309 = 1.232 + 77$
 $232 = 3.77 + 1$

$$1 = 232 - 3.77$$

$$1 = 232 - 3(309 - 1.232)$$

$$1 = 4.232 - 3.309$$

$$1 = 4(541 - 1.309) - 3.309$$

$$1 = 4.541 - 7.309$$

$$1 = 4.541 - 7.(1932 - 3.541)$$

$$1 = 25.541 - 7.1932$$

· So d' = 25 and d = 25 mod 1932 = [25].