Name:

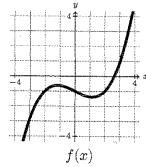
Multiple Choice

Directions: Read all questions carefully. In this section, you do not need to show your work. Mark the box that corresponds to the *best* answer. Unless otherwise directed, mark one box only. If you would like to change your answer, completely erase your old answer.

(3^{pts}) 1. The amount of water W (in thousands of gallons) in a pool is a function of time t (in days) since it was filled. Translate the statement W(15) = 12 into English.

For every 15 days, the pool looses 12 gallons of water.

When the pool has 15,000 gallons of water, it has been 12 days since it was filled.


For every 12 days, the pool gains 15 gallons of water.

When the pool has 12,000 gallons of water, it has been 15 days since it was filled.

After 12 days, the pool contains 15 thousand gallons of water.

After 15 days, the pool contains 12 thousand gallons of water.

(2pts) 2. Graphs of f(x) and g(x) appear below.

(a) Find g(-3).

3.5 -1 $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$

 $\begin{bmatrix} -3 \\ 2 \end{bmatrix}$

(b) Find f(g(3)).

 $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$

 $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$

-1

☐ 3 ☐ -0.5 $\begin{bmatrix} -3 \\ 0 \end{bmatrix}$

(c) Find g(f(3)).

____-2 ____-3

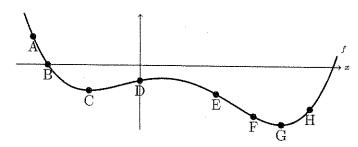
(d) Find the average rate of change in f(x) between x = -2 and x = 3.

-0.4 0.4

____1 ____-1.6 $\begin{bmatrix} 0 \\ -2.5 \end{bmatrix}$

(e) Find all value(s) of x such that f(x) = -1. Mark all that apply.

2


-0.5

___ -3 **___** 0 3

Ŋ.

(5 ^{pts})	3.		nmer, a tree has 4 of change in the m		2 weeks, the tree	has 4,100 leaves. Find
		☐ -250 leaves per☐ 12.19%	r week	12.19% 10.87%	250 le	aves per week %
$(2_{\mathrm{ea.}}^{\mathrm{pts}})$	4.	neither.		s might represent li	near functions, ex	ponential functions, or
		$ \begin{array}{c cc} x & f(x) \\ \hline 0 & 3 \\ 1 & 5 \\ 2 & 10 \end{array} $	$egin{array}{c c} x & g(x) \\ \hline 0 & 83 \\ 1 & 66 \\ 2 & 49 \\ \hline \end{array}$	$ \begin{array}{c cc} x & h(x) \\ \hline 0 & 1.4582 \\ 1 & 1.1666 \\ 2 & 0.9332 \\ \end{array} $	$ \begin{array}{c cc} x & r(x) \\ \hline 0 & 3 \\ 1 & 9 \\ 2 & 27 \end{array} $	$\begin{array}{c c} \hline 0 & 12 \\ \hline 1 & 12 \\ \end{array}$
also	D 2/1	3 9 4 14 (a) Which table(s	$ \begin{array}{c c} 3 & 32 \\ 4 & 15 \end{array} $ s) might represent	$ \begin{array}{c c} 3 & 0.7466 \\ 4 & 0.5973 \end{array} $ linear functions?	$egin{array}{c c} 3 & 81 \\ \hline & 4 & 245 \\ Mark all that applet \end{array}$	$4 \mid 12$
vern gw		[] f(x)	s(x)	g(x)	$\prod h(x)$	$\prod r(x)$
f this not mar	1> Ked	(b) Which table $g(x)$	might-represent $s(x)$	exponential function $\prod f(x)$	ons? Mark all that $h(x)$	at apply. $r(x)$
		(c) Which table(s $\square s(x)$	s) represent neither $\Box g(x)$	er? Mark all that a $\Box r(x)$	pply. $h(x)$	f(x)
(5 ^{pts})	15	regulations forbid	anyone from enter How many days m 129.2 days	ring the laboratory	until at most 2.5%	in a laboratory. Safety of the original amount urn to the laboratory? 101.59 days None of these
(3pts)	6.	company to recei payment of \$50,00 cash earns interes	ve an immediate 00 after 2 years, an at a rate of 3.2%	payment of \$40,00 id a payment of \$55 %, compounded cor	0, a payment of \$5,000 after 3 years. atinuously.	contract calls for your 345,000 after 1 year, a Assume that invested
Dee last Dog 2 —	The state of the s	(a) Find the futu \$190,280 \$198,490	re value (in 3 year \$198,970 \$190,390	s time) of the 4 pa \$199,020 \$198,630	yments made to y \$190,610 \$9	your company. \$\begin{aligned} \$190,000 \\ \$\begin{aligned} \$\text{None of these} \end{aligned}
for work		(b) Find the pres \$0 \$40,000	ent value of these [] \$181,448 [] \$180,449	payments. \$\begin{aligned} \$190,000 \\ \$180,876 \end{aligned}	\$190,391 \$180,593	\$181,212 None of these
$(5^{ m pts})$	Tanana da Angelia da A	Which discrete in $\boxed{}$ 7.58% $\boxed{}$ 7.24%	terest rate is equivalent $\frac{\prod 7.63\%}{\prod 7.41\%}$	valent to a continu $\boxed{}$ 7.46 $\boxed{}$ 7.15	%	f 7.41%? 7.69% 7.55%

 $(3_{\text{ea.}}^{\text{pts}})$ 8. The following is a graph of the function f(x). Some points are labeled.

(a) At which of the labeled points is the derivative of f zero? Mark all that apply.

□ A □ F

 \Box H

В

Ε

M G

 \Box D

C

(b) At which of the labeled points is the derivative of f negative? Mark all that apply.

 \Box D

I F ☐ G

E

M A

D

 \Box C

Пн

(c) At which of the labeled points is the derivative of f positive? Mark all that apply.

D

 \square B \square C

 \square E

 \Box G

Н

 \Box F

(d) At which of the labeled points is the derivative of f most negative?

В

 \prod H

B

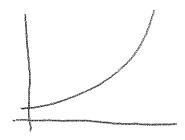
 \square A

 \Box C

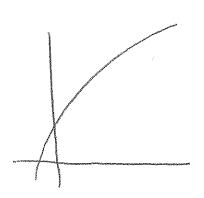
 \Box E

F

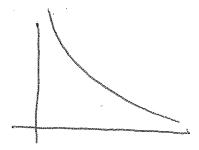
 \Box G

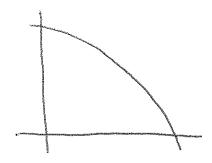

A

Free Response


Directions: Show all work. No credit for answers without work.

(2^{pts}_{ea.}) 9. Sketch graphs of functions with the following properties.


(a) Increasing and concave up.


(b) Increasing and concave down.

(c) Decreasing and concave up.

(d) Decreasing and concave down.

6. Find formulas for the following functions.

(a) The linear function through (-2,6) and (3,1).

$$M = \frac{\sqrt{-1/6}}{x_1 - x_0} = \frac{1 - 6}{3 - (-2)} = \frac{-5}{5} = -1$$

$$Y = -1.0 \times +b$$
 $6 = -1.0(-2) +b$
 $6 = 2 + b$
 $6 = 4$

(b) The exponential function through (-2,6) and (3,1).

$$6 = P_0 a^{-2}$$

Divide'

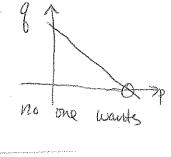
$$\frac{6}{1} = \frac{P_0 a^2}{P_0 a^3}$$

$$6 = \frac{\alpha^2}{\alpha^3}$$

$$6 = \frac{1}{a^3 \cdot a^2}$$

$$6 = \frac{1}{\alpha^5}$$

1=Po(6-5)


 $(3_{\rm ea.}^{\rm pts})$

10. The quantity q (in millions of boxes) of corn flake cereal demanded by the market when the price of a box is p dollars is given by the equation q = 44 - 5p.

(a) Find the p-intercept and q-intercept and interpret them in terms, of consumer demand.

When the prize is \$8.80

P=0: G=44-5-0=44 only want 44 molion cereal boxes.

6

(b) The supply curve is given by $q = p^2 + 2p$, where q (in millions of boxes) is the quantity of corn flakes produced when the price of a box is p dollars. Find the equilibrium price and quantity sold.

Supply = Demand

$$p^2 + 2p = 44 - 5p$$

 $p^2 + 7p - 44 = 0$
 $(p + 11)(p - 4) = 0$
 $p = 4$

 $(3_{\text{ea.}}^{\text{pts}})$ 12. Solve the following equations for x exactly. Decimal approximations are worth partial credit.

(a)
$$3e^{2x} = 4$$

Opts
$$e^{2x} = \frac{4}{3}$$

 4 pts ea . $ln(e^{2x}) = ln(\frac{4}{3})$
 $2x = ln(4) - ln(3)$
 $x = \frac{ln(4) - ln(3)}{2}$
2) for splity. (b) $5e^{6x+1} = 2^{2x}$
 $2(5) + (6x+1)$ $ln(5e^{6x+1}) = ln(2^{2x})$

$$\ln(5) + \ln(e^{6x+1}) = 2x \ln(2)$$

$$\ln(5) + 6x+1 = 2x \ln(2)$$

$$6x - 2x \ln(2) = -1 - \ln(5)$$

$$\times (6 - 2\ln(2)) = -1 - \ln(5)$$

$$\times = \left[\frac{-1 - \ln(5)}{6 - 2\ln(2)}\right]$$

$$\ln(7x+6) = 12$$

$$\ln(7x+6) = 3$$

$$e^{\ln(7x+6)} = e^{3}$$

$$7x + 6 = e^{3}$$

$$7x = e^{3} - 6$$

$$x = \frac{e^{3} - 6}{7}$$

$$\ln(8e^{-x+2}) = \ln(3)$$

$$\ln(8) + \ln(e^{-x+2}) = \ln(\ln(3))$$

$$\ln(8) + \ln(e^{-x+2}) = \ln(\ln(3))$$

$$\ln(8) + \ln(8e^{-x+2}) = \ln(\ln(3))$$

$$\ln(8) + \ln(8e^{-x+2}) = \ln(\ln(3))$$

$$\frac{1}{2} = \frac{18}{2} = a^{\frac{1}{2}}$$

$$a = (\frac{1}{2})^{\frac{1}{12}}$$

$$0.025 = (\frac{1}{2})^{\frac{1}{12}}$$

$$t = \frac{18 \ln(0.025)}{\ln(\frac{1}{2})} = 95.79 \, \text{days.}$$

$$\frac{\#_{6}}{H_{6}} P = 40,000 e^{0.032.3} + 45000 e^{0.032.2} + 50000 e^{0.032.1} + 55000$$

$$= 44,030.36 + 47,974.16 + 51,625.88 + 55000$$

$$= $198,630.40$$

$$P_{0} = \frac{198630.4}{e^{0.032(3)}} = $180,448.6$$

$$\pm 7.$$
 $P = P_0 e^{0.0741 t}$
= $P_0 (e^{0.0741})^t$
= $P_0 (1.0769)^t$

$$P = P_o (1 + 0.0769)^t$$

$$P = 0.0769 = \boxed{7.682}$$

Scratch Work