- 1. True/False.
 - (a) Every continuous function has a derivative.
 - (b) If f(x) and g(x) have a derivative at x = a, then h(x) = f(x)g(x) also has a derivative at x = a.
 - (c) If f(x) and g(x) have a derivative at x = a, then $h(x) = \frac{f(x)}{g(x)}$ also has a derivative at x = a.

Exam 1 Review

- (d) If f(x) and g(x) have a derivative at x = a, then h(x) = f(g(x)) also has a derivative at x = a.
- (e) If f(x) is continuous at x = a, then f(x) is differentiable at x = a.
- (f) If f(x) is differentiable at x = a, then f(x) is continuous at x = a.
- (g) If f(0) = 12, then $\lim_{x\to 0} f(x) = 12$.
- (h) If f(0) = 12 and f(x) is continuous, then $\lim_{x\to 0} f(x) = 12$.
- (i) $\lim_{x\to 0} \frac{1}{x^2}$ does not exist.
- (j) $\lim_{x\to 0} \frac{1}{x^2} = \infty$.
- 2. Give an example of each of the following.
 - (a) A function which has a removable discontinuity at x = 0.
 - (b) A function which is continuous but not differentiable at x = 0.
 - (c) A function for which f'(x) = 2 for all x and f(1) = 1.
 - (d) Two different functions with the property that f'(x) = f(x) for all x.
 - (e) A function with the property that f''(x) = f'(x) but f'(x) is not the same as f(x).
 - (f) A function for which $f(x) \ge 0$ for all x and f'(x) < 0 for all x.
 - (g) A function for which f'(x) is not always zero but f'(x) = 0 for infinitely many x.
- 3. State the definition of each of the following.
 - (a) f(x) is continuous at x = a.
 - (b) f(x) has a removable discontinuity at x = a.
 - (c) The derivative of f(x) at x = a.
- 4. State the following theorems.
 - (a) Squeeze Theorem
 - (b) Intermediate Value Theorem

5. Evaluate. Answer with a number, $-\infty$, ∞ , or "does not exist". Do not use L'Hopital's rule.

(a)
$$f(x) = \begin{cases} x^2 & x \neq 0 \\ 4 & x = 0 \end{cases}$$
, $g(x) = 2x$. $\lim_{x \to 0} f(g(x))$

(b)
$$f(x) = \begin{cases} x^2 & x \neq 0 \\ 4 & x = 0 \end{cases}$$
, $g(x) = 2x$. $f\left(\lim_{x \to 0} g(x)\right)$

(c)
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + x - 2}$$

(d)
$$\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}$$

(e)
$$\lim_{x\to 0} x^{1/3} \sin(4/x)$$

(f)
$$\lim_{x\to 0} x^{1/2} \sin(4/x)$$

(g)
$$\lim_{x \to \pi^-} \csc(x)$$

(h)
$$\lim_{x \to -\infty} \frac{-x^2 - 4x + 8}{3x^3}$$

(i)
$$\lim_{x \to -\infty} \frac{-x^2 - 4x + 8}{3x^2}$$

(j)
$$\lim_{x\to 0^-} \frac{x^2 - 4x + 8}{3x^3}$$

(k)
$$\lim_{x\to 0^+} \frac{x^2 - 4x + 8}{3x^2}$$

(1)
$$\lim_{x \to 0} e^{1/x}$$

(m)
$$\lim_{x\to 0^-} e^{1/x}$$

(n)
$$\lim_{t\to 0} \frac{t}{\sin(2t)}$$

(o)
$$\lim_{x\to 0} \frac{\cos(4x^2) - 1}{x^2}$$

6. Find the derivative for each of the following functions.

(a)
$$f(x) = \frac{e^x}{\cos(x)}$$

(b)
$$f(x) = x^2 \cot(x)$$

(c)
$$f(x) = \frac{\ln(x)}{\cos(x^2)}$$

(d)
$$f(x) = \sec(e^{5\cos(x^2)})$$

(e)
$$f(x) = \tan \sqrt{x^2 + 1}$$

(f)
$$f(x) = 4x^2 \sin(x) \sec(3x)$$

(g)
$$f(x) = (\csc(x))^4$$

(h)
$$f(x) = 3^{\tan(x)}$$

(i)
$$f(x) = (\cos(x))^{\sin(x)}$$

7. Find f''(x) for each of the following functions.

(a)
$$f(x) = 2x^3 - 4x^2 + 5x + 2$$

(b)
$$f(x) = e^{\sin(x)}$$