Math221: Chapter 2.5 Selected Exercises

September 13, 2007

$1 \quad 2.5 \ \#8$

Find the derivative of $h(x) = (x^3 + 2) \sqrt{x^5}$. Solution:

$$h'(x) = \frac{d}{dx} \left(\left[x^3 + 2 \right] \left[\sqrt{x^5} \right] \right)$$

$$= \left(\frac{d}{dx} \left(x^3 + 2 \right) \right) \sqrt{x^5} + \left(x^3 + 2 \right) \left(\frac{d}{dx} \sqrt{x^5} \right)$$

$$= \left(3x^2 \right) \sqrt{x^5} + \left(x^3 + 2 \right) \left(\frac{d}{dx} x^{5/2} \right)$$

$$= 3x^2 \cdot x^{5/2} + \left(x^3 + 2 \right) \left(\frac{5}{2} x^{3/2} \right)$$

$$= 3x^{9/4} + \left(x^3 + 2 \right) \left(\frac{5}{2} x^{3/2} \right)$$

$2 \quad 2.5 \ \# 20$

Find the derivative of $h(x) = \sqrt{(x^2 + 1)(\sqrt{x} + 1)^3}$.

Solution: first, let us note that h(x) is the composition h(x) = f(g(x)) of two simpler functions: the outer function $f(u) = \sqrt{u} = u^{1/2}$ and the inner function $g(x) = (x^2 + 1)(\sqrt{x} + 1)^3$. Therefore, we will want to apply the chain terms to do so, we first need to compute the derivatives of f(u) and g(x). We note that $f'(u) = \frac{1}{2}u^{-1/2} = \frac{1}{2\sqrt{u}}$. We compute g'(x) as follows, applying the product rule first:

$$g'(x) = \frac{d}{dx} \left((x^2 + 1) (\sqrt{x} + 1)^3 \right)$$

$$= \left(\frac{d}{dx} (x^2 + 1) \right) (\sqrt{x} + 1)^3 + (x^2 + 1) \frac{d}{dx} \left((\sqrt{x} + 1)^3 \right)$$

$$= (2x) (\sqrt{x} + 1)^3 + (x^2 + 1) \left(3 (\sqrt{x} + 1)^2 \cdot \frac{d}{dx} (\sqrt{x} + 1) \right)$$

$$= 2x (\sqrt{x} + 1)^3 + (x^2 + 1) \left(3 (\sqrt{x} + 1)^2 \cdot \frac{1}{2} x^{-1/2} \right)$$

$$= 2x (\sqrt{x} + 1)^3 + \frac{3}{2\sqrt{x}} (x^2 + 1) (\sqrt{x} + 1)^2.$$

(To evaluate $\frac{d}{dx}\left(\left(\sqrt{x}+1\right)^3\right)$, we need the chain rule again; this time, the outer function is u^3 and the inner

function is $\sqrt{x} + 1$.) Finally, we are ready to compute h'(x):

$$h'(x) = \frac{d}{dx} (f(g(x)))$$

$$= f'(g(x)) \cdot g'(x)$$

$$= \frac{1}{2\sqrt{g(x)}} \left(2x \left(\sqrt{x} + 1 \right)^3 + \frac{3}{2\sqrt{x}} \left(x^2 + 1 \right) \left(\sqrt{x} + 1 \right)^2 \right)$$

$$= \frac{1}{2\sqrt{(x^2 + 1)(\sqrt{x} + 1)^3}} \left(2x \left(\sqrt{x} + 1 \right)^3 + \frac{3}{2\sqrt{x}} \left(x^2 + 1 \right) \left(\sqrt{x} + 1 \right)^2 \right)$$

$$= \frac{2x \left(\sqrt{x} + 1 \right)^3 + \frac{3}{2\sqrt{x}} \left(x^2 + 1 \right) \left(\sqrt{x} + 1 \right)^2}{2\sqrt{(x^2 + 1)(\sqrt{x} + 1)^3}}.$$

2.5 # 243

Find an equation of the tangent line to y=h(x) at x=a, with $h(x)=\frac{6}{x^2+4}$ and a=-2. Solution: we know the tangent line at x=a has the equation y=h'(a)(x-a)+h(a), so we must solve for h'(a) and h(a). We compute h(a) by substitution: $h(a)=h(-2)=\frac{6}{(-2)^2+4}=\frac{6}{8}=\frac{3}{4}$. We compute h'(x)by first writing h(x) in a different form

$$h(x) = \frac{6}{x^2 + 4} = 6(x^2 + 4)^{-1}$$

and recognizing that h(x) is the composition h(x) = f(g(x)) of an outer function $f(u) = 6u^{-1}$ and an inner function $g(x) = x^2 + 4$. We compute $f'(u) = -6u^{-2}$ using the power rule and g'(x) = 2x using the sum rule and the power rule. Now, we are able to compute

$$h'(x) = \frac{d}{dx} (f(g(x)))$$

$$= f'(g(x)) \cdot g'(x)$$

$$= -6 (g(x))^{-2} \cdot (2x)$$

$$= \frac{-6}{(x^2 + 4)^2} \cdot 2x$$

$$= \frac{-12x}{(x^2 + 4)^2}$$

so that

$$h'(a) = h'(-2) = \frac{-12 \cdot (-2)}{\left((-2)^2 + 4\right)^2}$$
$$= \frac{24}{(4+4)^2}$$
$$= \frac{24}{64}$$
$$= \frac{3}{8}.$$

Putting all the pieces together, the equation of the tangent line at x = -2 is

$$y = h'(a) (x - a) + h(a)$$
$$= \frac{3}{8} (x - (-2)) + \frac{3}{4}$$
$$= \frac{3}{8} (x + 2) + \frac{3}{4}.$$

$4 \quad 2.5 \ \#35$

Assume $f(x) = x^3 + 4x - 1$ has an inverse g(x). Find g'(-1). Solution: because g(x) is an inverse for f(x), we know that

$$g'(x) = \frac{1}{f'(g(x))}$$

(like our other rules for differentiation, you should memorize this formula). To use the formula, we must compute $f'(x) = 3x^2 + 4$. By substitution,

$$g'(-1) = \frac{1}{f'(g(-1))}$$
$$= \frac{1}{3(g(-1))^2 + 4}.$$

To finish solving the problem, we need to know g(-1). Suppose that we are able to find a number z such that f(z) = -1. Well, because g is an inverse for f, we have

$$g(f(z)) = z$$

or

$$q(-1) = z$$
.

Therefore, to determine the value of g(-1), we must search for a number z with the property that f(z) = -1. This can be a tricky thing to do, but the task won't be too difficult for the problems that we might ask. For example, notice that z = 0 works because f(0) = -1. Therefore g(-1) = 0.

Finally, we are able to complete the problem:

$$g'(-1) = \frac{1}{3(g(-1))^{2} + 4}$$
$$= \frac{1}{3(0)^{2} + 4}$$
$$= \frac{1}{4}.$$

$5 \quad 2.5 \ \#36$

Assume $f(x) = x^3 + 2x + 1$ has an inverse g(x). Find g'(-2). Solution: first, we compute $f'(x) = 3x^2 + 2$. Next, using our formula, we have

$$g'(-2) = \frac{1}{f'(g(-2))}$$

= $\frac{1}{3(g(-2))^2 + 2}$.

What is g(-2)? Again, we must search for a number z with the property that f(z) = -2. Notice that for any positive number z, f(z) will be positive because none of the terms in f(x) involve subtraction. So, we should try values of z which are negative. In fact, z = -1 does the trick because

$$f(-1) = (-1)^3 + 2(-1) + 1 = -1 - 2 + 1 = -2.$$

Therefore g(-2) = -1 and we are ready to complete the problem:

$$g'(-2) = \frac{1}{3(g(-2))^{2} + 2}$$

$$= \frac{1}{3(-1)^{2} + 2}$$

$$= \frac{1}{3+2}$$

$$= \frac{1}{5}.$$

6 2.5 #40

Assume $f(x) = \sqrt{x^5 + 4x^3 + 3x + 1}$ has an inverse g(x). Find g'(3).

Solution: first, we must compute f'(x). To do so, we rewrite $f(x) = (x^5 + 4x^3 + 3x + 1)^{1/2}$ and then use the chain rule to compute

$$f'(x) = \frac{1}{2} (x^5 + 4x^3 + 3x + 1)^{-1/2} \cdot \frac{d}{dx} (x^5 + 4x^3 + 3x + 1)$$

$$= \frac{1}{2} (x^5 + 4x^3 + 3x + 1)^{-1/2} \cdot (5x^4 + 12x^2 + 3)$$

$$= \frac{1}{2\sqrt{x^5 + 4x^3 + 3x + 1}} \cdot (5x^4 + 12x^2 + 3)$$

$$= \frac{5x^4 + 12x^2 + 3}{2\sqrt{x^5 + 4x^3 + 3x + 1}}.$$

Next, we use our formula for the derivative of an inverse function:

$$g'(3) = \frac{1}{f'(g(3))}.$$

But what is g(3)? Once again, we must find a number z so that f(z) = 3. After some experimentation, we might try z = 1 and discover

$$f(1) = \sqrt{1^5 + 4 \cdot 1^3 + 3 \cdot 1 + 1}$$

$$= \sqrt{1 + 4 + 3 + 1}$$

$$= \sqrt{9}$$

$$= 3.$$

Therefore g(3) = 1. Now, we are ready to finish the problem:

eady to finish the problem:

$$g'(3) = \frac{1}{f'(g(3))}$$

$$= \frac{1}{f'(1)}$$

$$= \frac{2\sqrt{1^5 + 4 \cdot 1^3 + 3 \cdot 1 + 1}}{5 \cdot 1^4 + 12 \cdot 1^2 + 3}$$

$$= \frac{2\sqrt{9}}{20}$$

$$= \frac{6}{20}$$

$$= \frac{3}{10}.$$