CSTBC Homework 2

6th June 2007

A Bijection 1

Let $n \ge 1$ be an integer, let $\mathcal{U} = [n]$ (recall that $[n] = \{1, 2, \dots, n\}$), and define

$$A = [n] \times [n-1] \times \dots \times [1]$$

 $\begin{array}{lcl} A & = & [n] \times [n-1] \times \cdots \times [1] \\ B & = & \{\pi \, | \, \pi \text{ is a permutation of } \mathcal{U} \} \, . \end{array}$

Construct a bijection $f:A\to B$. (See hints in Lecture 2.)

Binomial Coefficients 2

By using bijections or counting the size of a set in two different ways, prove the following equalities.

- 1. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$.
- 2. $k\binom{n}{k} = n\binom{n-1}{k-1}$.
- 3. $\sum_{j=1}^{n} j(j-1) = 2\binom{n+1}{3}$.