Jordan Almeter, Samet Demircan, Andrew Kallmeyer, Kevin G. Milans (milans@math.wvu.edu), Robert Winslow

West Virginia University

AMS Fall Eastern Sectional Meeting State University of New York at Buffalo Buffalo, NY September 16, 2017

Problem advertisement

▶ A k-coloring ϕ : $[n] \rightarrow [k]$ is good if every 3-AP a - d, a, a + d with $\phi(a - d) = \phi(a + d)$ has $\phi(a) > \phi(a - d)$.

Problem advertisement

- ▶ A k-coloring ϕ : $[n] \rightarrow [k]$ is good if every 3-AP a d, a, a + d with $\phi(a d) = \phi(a + d)$ has $\phi(a) > \phi(a d)$.
- ▶ Let *f*(*n*) be the min. *k* such that good *k*-colorings of [*n*] exist.

Problem advertisement

- ▶ A k-coloring ϕ : $[n] \rightarrow [k]$ is good if every 3-AP a d, a, a + dwith $\phi(a - d) = \phi(a + d)$ has $\phi(a) > \phi(a - d)$.
- Let f(n) be the min. k such that good k-colorings of [n] exist.

Question

What is the growth rate of f(n)?

A star-coloring of G is a partition of V(G) into independent sets V₁,..., V_k such that V_i ∪ V_j induces a star forest.

- A star-coloring of G is a partition of V(G) into independent sets V₁,..., V_k such that V_i ∪ V_j induces a star forest.
- ► The star chromatic number, denoted \u03c0_s(G), is the minimum number of parts needed.

An ordered star-coloring of G is a partition of V(G) into independent sets V₁,..., V_k such that for i < j, the vertices in V_i ∪ V_j induce a star forest with centers in V_j.

An ordered star-coloring of G is a partition of V(G) into independent sets V₁,..., V_k such that for i < j, the vertices in V_i ∪ V_j induce a star forest with centers in V_j.

- An ordered star-coloring of G is a partition of V(G) into independent sets V₁,..., V_k such that for i < j, the vertices in V_i ∪ V_j induce a star forest with centers in V_j.
- ► The ordered star chromatic number, denoted \(\chi_{\cos}(G)\), is the min. number of parts needed.

A distance 2-coloring of G is a partition of V(G) into independent sets V₁,..., V_k such that V_i ∪ V_j induces a graph with max. degree at most 1.

A distance 2-coloring of G is a partition of V(G) into independent sets V₁,..., V_k such that V_i ∪ V_j induces a graph with max. degree at most 1.

- A distance 2-coloring of G is a partition of V(G) into independent sets V₁,..., V_k such that V_i ∪ V_j induces a graph with max. degree at most 1.
- It is also χ(G²), the chromatic number of the distance square graph G².

• Clearly, $\chi_{s}(G) \leq \chi_{os}(G) \leq \chi(G^{2})$.

• Clearly,
$$\chi_{s}(G) \leq \chi_{os}(G) \leq \chi(G^{2})$$
.

In an ordered star coloring, if u and v share a color, then every common neighbor has a higher color.

Proposition $\chi_{os}(G) \ge \delta(G) + 1.$

Proposition $\chi_{os}(G) \ge \delta(G) + 1.$

Proof.

• Let $v \in V(G)$ have smallest color.

Proposition $\chi_{os}(G) \ge \delta(G) + 1.$

Proof.

- Let $v \in V(G)$ have smallest color.
- All colors in N(v) are distinct.

Proposition $\chi_{os}(G) \ge \delta(G) + 1.$

Proof.

- Let $v \in V(G)$ have smallest color.
- All colors in N(v) are distinct.
- With v, this gives d(v) + 1 colors.

 A generalization of ordered star coloring was first studied by Karpas, Neiman, and Smorodinsky (2015).

Prior work

 A generalization of ordered star coloring was first studied by Karpas, Neiman, and Smorodinsky (2015).

Theorem (KNS 2015)

▶ If G is an n-vertex d-degenerate graph, then $\chi_{os}(G) \leq d(4\sqrt{n}+1).$

Prior work

 A generalization of ordered star coloring was first studied by Karpas, Neiman, and Smorodinsky (2015).

Theorem (KNS 2015)

- ▶ If G is an n-vertex d-degenerate graph, then $\chi_{os}(G) \leq d(4\sqrt{n}+1).$
- There is an n-vertex 2-degenerate graph G such that $\chi_{os}(G) \ge \Omega(n^{1/3}).$

► The *d*-dimensional cube, denoted Q_d has vertex set {0,1}^d with two vertices adjacent if and only if they differ in exactly one coordinate.

- ► The *d*-dimensional cube, denoted Q_d has vertex set {0,1}^d with two vertices adjacent if and only if they differ in exactly one coordinate.
- Fertin-Raspaud-Reed (2004): $(d+2)/3 \le \chi_s(Q_d) \le d+1$.

- ► The *d*-dimensional cube, denoted Q_d has vertex set {0,1}^d with two vertices adjacent if and only if they differ in exactly one coordinate.
- Fertin-Raspaud-Reed (2004): $(d+2)/3 \le \chi_s(Q_d) \le d+1$.

Theorem $\chi_{os}(Q_d) = d + 1$

- ► The *d*-dimensional cube, denoted Q_d has vertex set {0,1}^d with two vertices adjacent if and only if they differ in exactly one coordinate.
- Fertin-Raspaud-Reed (2004): $(d+2)/3 \le \chi_s(Q_d) \le d+1$.

Theorem

 $\chi_{\rm os}(Q_d)=d+1$

• Lower bound: $\chi_{os}(G) \ge \delta(G) + 1$

- ► The *d*-dimensional cube, denoted Q_d has vertex set {0,1}^d with two vertices adjacent if and only if they differ in exactly one coordinate.
- Fertin-Raspaud-Reed (2004): $(d+2)/3 \le \chi_s(Q_d) \le d+1$.

Theorem

 $\chi_{\rm os}(Q_d)=d+1$

- Lower bound: $\chi_{os}(G) \ge \delta(G) + 1$
- ▶ Upper bound: easy when d = 2^k 1, as we may use a perfect linear code (even gives χ(Q²_d) = d + 1).

- ► The *d*-dimensional cube, denoted Q_d has vertex set {0,1}^d with two vertices adjacent if and only if they differ in exactly one coordinate.
- Fertin-Raspaud-Reed (2004): $(d+2)/3 \le \chi_s(Q_d) \le d+1$.

Theorem

 $\chi_{\rm os}(Q_d)=d+1$

- Lower bound: $\chi_{os}(G) \ge \delta(G) + 1$
- ▶ Upper bound: easy when d = 2^k 1, as we may use a perfect linear code (even gives χ(Q²_d) = d + 1).
- ► Trickier for general *d*.

• We are particularly interested in $\chi_{os}(K_m \Box K_n)$.

• We are particularly interested in $\chi_{os}(K_m \Box K_n)$.

- We are particularly interested in $\chi_{os}(K_m \Box K_n)$.
- ► To show \(\chi_{\construct}(K_m □ K_n) \le t\), we construct an (m \(\times n\))-matrix with entries in [t] such that

- We are particularly interested in $\chi_{os}(K_m \Box K_n)$.
- ► To show \(\chi_{\construct}(K_m □ K_n) \le t\), we construct an (m \(\times n\))-matrix with entries in [t] such that

- We are particularly interested in $\chi_{os}(K_m \Box K_n)$.
- ► To show \(\chi_{\construct}(K_m □ K_n) \le t\), we construct an (m \(\times n\))-matrix with entries in [t] such that

- We are particularly interested in $\chi_{os}(K_m \Box K_n)$.
- ► To show \(\chi_{\construct}(K_m □ K_n) \le t\), we construct an (m \(\times n\))-matrix with entries in [t] such that

- We are particularly interested in $\chi_{os}(K_m \Box K_n)$.
- ► To show \(\chi_{\cons}(K_m \[□ K_n\)) ≤ t\), we construct an (m \(\times n\))-matrix with entries in [t] such that

• If
$$A_{ij} = A_{k\ell}$$
, then

- We are particularly interested in $\chi_{os}(K_m \Box K_n)$.
- ► To show \(\chi_{\cons}(K_m \[□ K_n\)) ≤ t\), we construct an (m \(\times n\))-matrix with entries in [t] such that

- Rows and columns have distinct entries.
- If A_{ij} = A_{kℓ}, then the corners A_{ik} and A_{jℓ} have higher entries.
Lemma

Lemma

In an ordered star coloring of $K_m \Box K_n$, each column of height m contains k colors which are assigned to at most k vertices for $1 \le k \le m$.

▶ Let *S* be the set of the *k* highest entries in a column.

Lemma

In an ordered star coloring of $K_m \Box K_n$, each column of height m contains k colors which are assigned to at most k vertices for $1 \le k \le m$.

► Let S be the set of the k highest entries in a column.

Lemma

- Let S be the set of the k highest entries in a column.
- Let $\alpha \in S$.

Lemma

- Let S be the set of the k highest entries in a column.
- Let $\alpha \in S$.
- Each vertex with color α shares a row with an entry in S.

Lemma

- Let S be the set of the k highest entries in a column.
- Let $\alpha \in S$.
- Each vertex with color α shares a row with an entry in S.

Lemma

- Let S be the set of the k highest entries in a column.
- Let $\alpha \in S$.
- Each vertex with color α shares a row with an entry in S.

Lemma

- Let S be the set of the k highest entries in a column.
- Let $\alpha \in S$.
- Each vertex with color α shares a row with an entry in S.
- At most k vertices have color α.

Lemma

In an ordered star coloring of $K_m \Box K_n$, each column of height m contains k colors which are assigned to at most k vertices for $1 \le k \le m$.

Theorem

 $\chi_{\mathrm{os}}(K_m \square K_n) \ge nH_m$, where $H_m = 1 + \frac{1}{2} + \cdots + \frac{1}{m}$.

Lemma

In an ordered star coloring of $K_m \Box K_n$, each column of height m contains k colors which are assigned to at most k vertices for $1 \le k \le m$.

Theorem $\chi_{os}(K_m \Box K_n) \ge nH_m$, where $H_m = 1 + \frac{1}{2} + \dots + \frac{1}{m}$. Theorem If $m! \mid n$, then $\chi_{os}(K_m \Box K_n) = nH_m$.

Lemma

In an ordered star coloring of $K_m \Box K_n$, each column of height m contains k colors which are assigned to at most k vertices for $1 \le k \le m$.

Theorem $\chi_{os}(K_m \Box K_n) \ge nH_m$, where $H_m = 1 + \frac{1}{2} + \cdots + \frac{1}{m}$. Theorem

If $m! \mid n$, then $\chi_{os}(K_m \Box K_n) = nH_m$.

Corollary

If m is fixed and $n \to \infty$, then $\chi_{os}(K_m \Box K_n) = (1 + o(1))n \ln m$.

Proposition

If $m \leq n$ and both are powers of 2, then $\chi_{os}(K_m \Box K_n) \leq nm^{\lg 3-1}$.

Proposition

If $m \leq n$ and both are powers of 2, then $\chi_{os}(K_m \Box K_n) \leq nm^{\lg 3-1}$.

Partition the matrix into quadrants.

Proposition

If $m \leq n$ and both are powers of 2, then $\chi_{os}(K_m \Box K_n) \leq nm^{\lg 3-1}$.

- Partition the matrix into quadrants.
- Color recursively, using color sets S_0, S_1, S_2 with $S_0 < S_1 < S_2$.

Proposition

If $m \leq n$ and both are powers of 2, then $\chi_{os}(K_m \Box K_n) \leq nm^{\lg 3-1}$.

- Partition the matrix into quadrants.
- Color recursively, using color sets S_0, S_1, S_2 with $S_0 < S_1 < S_2$.

Proposition

If $m \leq n$ and both are powers of 2, then $\chi_{os}(K_m \Box K_n) \leq nm^{\lg 3-1}$.

Corollary If $m \leq n$, then $\chi_{os}(K_m \Box K_n) \leq 3nm^{\lg 3-1} \approx 3nm^{0.585}$.

Proposition

If $m \leq n$ and both are powers of 2, then $\chi_{os}(K_m \Box K_n) \leq nm^{\lg 3-1}$.

Corollary

If $m \leq n$, then $\chi_{os}(K_m \Box K_n) \leq 3nm^{\lg 3-1} \approx 3nm^{0.585}$.

• $\Omega(n \log n) \leq \chi_{os}(K_n \square K_n) \leq O(n^{1.585})$

Note: χ'_{os}(G) is the minimum k such that E(G) can be partitioned into matchings M₁,..., M_k such that M_j is induced in the spanning subgraph with edge set M₁ ∪···∪ M_j.

- Note: χ'_{os}(G) is the minimum k such that E(G) can be partitioned into matchings M₁,..., M_k such that M_j is induced in the spanning subgraph with edge set M₁ ∪···∪ M_j.
- ► Using the famous construction of Behrend giving a subset of [n] of size n^{1-O(1/√log n)} with no 3 term arithmetic progressions, one can construct Ruzsa–Szemerédi graphs with n^{2-O(1/√log n)} edges that can be partitioned into n induced matchings.

- Note: χ'_{os}(G) is the minimum k such that E(G) can be partitioned into matchings M₁,..., M_k such that M_j is induced in the spanning subgraph with edge set M₁ ∪···∪ M_j.
- ► Using the famous construction of Behrend giving a subset of [n] of size n^{1-O(1/√log n)} with no 3 term arithmetic progressions, one can construct Ruzsa–Szemerédi graphs with n^{2-O(1/√log n)} edges that can be partitioned into n induced matchings.
- An analogue for $\chi'_{os}(K_{n,n})$ is available.

- Note: χ'_{os}(G) is the minimum k such that E(G) can be partitioned into matchings M₁,..., M_k such that M_j is induced in the spanning subgraph with edge set M₁ ∪···∪ M_j.
- ► Using the famous construction of Behrend giving a subset of [n] of size n^{1-O(1/√log n)} with no 3 term arithmetic progressions, one can construct Ruzsa–Szemerédi graphs with n^{2-O(1/√log n)} edges that can be partitioned into n induced matchings.
- An analogue for $\chi'_{os}(K_{n,n})$ is available.
- ► A *k*-coloring ϕ : $[n] \rightarrow [k]$ is good if every 3-AP a d, a, a + dwith $\phi(a - d) = \phi(a + d)$ has $\phi(a) > \phi(a - d)$.

- Note: χ'_{os}(G) is the minimum k such that E(G) can be partitioned into matchings M₁,..., M_k such that M_j is induced in the spanning subgraph with edge set M₁ ∪···∪ M_j.
- ► Using the famous construction of Behrend giving a subset of [n] of size n^{1-O(1/√log n)} with no 3 term arithmetic progressions, one can construct Ruzsa–Szemerédi graphs with n^{2-O(1/√log n)} edges that can be partitioned into n induced matchings.
- An analogue for $\chi'_{os}(K_{n,n})$ is available.
- ▶ A k-coloring ϕ : $[n] \rightarrow [k]$ is good if every 3-AP a d, a, a + dwith $\phi(a - d) = \phi(a + d)$ has $\phi(a) > \phi(a - d)$.
- ▶ Let *f*(*n*) be the min. *k* such that good *k*-colorings of [*n*] exist.

- Note: χ'_{os}(G) is the minimum k such that E(G) can be partitioned into matchings M₁,..., M_k such that M_j is induced in the spanning subgraph with edge set M₁ ∪···∪ M_j.
- ► Using the famous construction of Behrend giving a subset of [n] of size n^{1-O(1/√log n)} with no 3 term arithmetic progressions, one can construct Ruzsa–Szemerédi graphs with n^{2-O(1/√log n)} edges that can be partitioned into n induced matchings.
- An analogue for $\chi'_{os}(K_{n,n})$ is available.
- ▶ A k-coloring ϕ : $[n] \rightarrow [k]$ is good if every 3-AP a d, a, a + dwith $\phi(a - d) = \phi(a + d)$ has $\phi(a) > \phi(a - d)$.
- ▶ Let *f*(*n*) be the min. *k* such that good *k*-colorings of [*n*] exist.

Proposition

$$\chi_{\rm os}(K_m \square K_n) = \chi_{\rm os}'(K_{n,n}) \leq (2n-1)f(2n-1)$$

- ▶ A k-coloring ϕ : $[n] \rightarrow [k]$ is good if every 3-AP a d, a, a + dwith $\phi(a - d) = \phi(a + d)$ has $\phi(a) > \phi(a - d)$.
- Let f(n) be the min. k such that good k-colorings of [n] exist.

Proposition

 $\chi_{\mathrm{os}}(K_m \square K_n) = \chi'_{\mathrm{os}}(K_{n,n}) \leq (2n-1)f(2n-1)$

- ▶ A k-coloring ϕ : $[n] \rightarrow [k]$ is good if every 3-AP a d, a, a + d with $\phi(a d) = \phi(a + d)$ has $\phi(a) > \phi(a d)$.
- Let f(n) be the min. k such that good k-colorings of [n] exist.

Proposition

$$\chi_{\mathrm{os}}(K_m \square K_n) = \chi'_{\mathrm{os}}(K_{n,n}) \leq (2n-1)f(2n-1)$$

► To bound f(n), a similar recursive construction gives $f(n) \le O(n^{\frac{\ln 2}{\ln 3}}) \le O(n^{0.631})$.

- ▶ A k-coloring ϕ : $[n] \rightarrow [k]$ is good if every 3-AP a d, a, a + d with $\phi(a d) = \phi(a + d)$ has $\phi(a) > \phi(a d)$.
- Let f(n) be the min. k such that good k-colorings of [n] exist.

Proposition

$$\chi_{\mathrm{os}}(K_m \square K_n) = \chi'_{\mathrm{os}}(K_{n,n}) \leq (2n-1)f(2n-1)$$

- To bound f(n), a similar recursive construction gives $f(n) \le O(n^{\frac{\ln 2}{\ln 3}}) \le O(n^{0.631}).$
- With Proposition, this gives χ'_{os}(K_{n,n}) ≤ O(n^{1.631}), but so far no improvement over the earlier bound.

► If $m! \mid n$, then $\chi'_{os}(K_{m,n}) = nH_m = (1 + o(1))n \ln m$.

▶ If $m! \mid n$, then $\chi'_{os}(K_{m,n}) = nH_m = (1 + o(1))n \ln m$.

• $\Omega(n \log n) \le \chi'_{os}(K_{n,n}) \le O(n^{1.585}).$

- ▶ If $m! \mid n$, then $\chi'_{os}(K_{m,n}) = nH_m = (1 + o(1))n \ln m$.
- $\Omega(n \log n) \leq \chi'_{os}(K_{n,n}) \leq O(n^{1.585}).$
- $\Omega(\log n) \leq f(n) \leq O(n^{0.631}).$

- If $m! \mid n$, then $\chi'_{os}(K_{m,n}) = nH_m = (1 + o(1))n \ln m$.
- $\Omega(n \log n) \leq \chi'_{os}(K_{n,n}) \leq O(n^{1.585}).$
- $\Omega(\log n) \leq f(n) \leq O(n^{0.631}).$
- ► Dvořák–Mohar–Šámal: $2n(1 + o(1)) \le \chi'_{s}(K_n) \le n^{1+O(\frac{1}{\sqrt{\log n}})}$.

- If $m! \mid n$, then $\chi'_{os}(K_{m,n}) = nH_m = (1 + o(1))n \ln m$.
- $\Omega(n \log n) \leq \chi'_{os}(K_{n,n}) \leq O(n^{1.585}).$
- $\Omega(\log n) \leq f(n) \leq O(n^{0.631}).$
- ► Dvořák–Mohar–Šámal: $2n(1+o(1)) \le \chi'_{\rm s}(K_n) \le n^{1+O(\frac{1}{\sqrt{\log n}})}$.

Open Problems

Determine the order of growth of:

• $\chi'_{os}(K_{n,n})$ and $\chi'_{os}(K_n)$

- If $m! \mid n$, then $\chi'_{os}(K_{m,n}) = nH_m = (1 + o(1))n \ln m$.
- $\Omega(n \log n) \leq \chi'_{os}(K_{n,n}) \leq O(n^{1.585}).$
- $\Omega(\log n) \leq f(n) \leq O(n^{0.631}).$
- ► Dvořák–Mohar–Šámal: $2n(1+o(1)) \le \chi'_{\rm s}(K_n) \le n^{1+O(\frac{1}{\sqrt{\log n}})}$.

Open Problems

Determine the order of growth of:

- $\chi'_{os}(K_{n,n})$ and $\chi'_{os}(K_n)$
- ► f(n)

- ▶ If $m! \mid n$, then $\chi'_{os}(K_{m,n}) = nH_m = (1 + o(1))n \ln m$.
- $\Omega(n \log n) \leq \chi'_{os}(K_{n,n}) \leq O(n^{1.585}).$
- $\Omega(\log n) \leq f(n) \leq O(n^{0.631}).$
- ► Dvořák–Mohar–Šámal: $2n(1+o(1)) \le \chi'_{\rm s}(K_n) \le n^{1+O(\frac{1}{\sqrt{\log n}})}$.

Open Problems

Determine the order of growth of:

- $\chi'_{
 m os}(K_{n,n})$ and $\chi'_{
 m os}(K_n)$
- ► f(n)
- DMŠ: $\chi'_{\rm s}(K_n)$

- If $m! \mid n$, then $\chi'_{os}(K_{m,n}) = nH_m = (1 + o(1))n \ln m$.
- $\Omega(n \log n) \leq \chi'_{os}(K_{n,n}) \leq O(n^{1.585}).$
- $\Omega(\log n) \leq f(n) \leq O(n^{0.631}).$
- ► Dvořák–Mohar–Šámal: $2n(1+o(1)) \le \chi'_{\rm s}(K_n) \le n^{1+O(\frac{1}{\sqrt{\log n}})}$.

Open Problems

Determine the order of growth of:

- $\chi'_{
 m os}(K_{n,n})$ and $\chi'_{
 m os}(K_n)$
- ► f(n)
- DMŠ: $\chi'_{\rm s}(K_n)$
- KNS: The max. of χ_{os}(G) over n-vertex 2-degenerate graphs. (Between Ω(n^{1/3}) and O(n^{1/2}).)

- If $m! \mid n$, then $\chi'_{os}(K_{m,n}) = nH_m = (1 + o(1))n \ln m$.
- $\Omega(n \log n) \leq \chi'_{os}(K_{n,n}) \leq O(n^{1.585}).$
- $\Omega(\log n) \leq f(n) \leq O(n^{0.631}).$
- ► Dvořák–Mohar–Šámal: $2n(1+o(1)) \le \chi'_{\rm s}(K_n) \le n^{1+O(\frac{1}{\sqrt{\log n}})}$.

Open Problems

Determine the order of growth of:

- $\chi'_{
 m os}(K_{n,n})$ and $\chi'_{
 m os}(K_n)$
- ► f(n)
- DMŠ: $\chi'_{\rm s}(K_n)$
- KNS: The max. of χ_{os}(G) over n-vertex 2-degenerate graphs. (Between Ω(n^{1/3}) and O(n^{1/2}).)

Thank You.

Appendix: hypercube details

Theorem $\chi_{os}(Q_d) = d + 1.$
Theorem $\chi_{os}(Q_d) = d + 1.$

• We construct $f_d : \mathbb{F}_2^d \to [0, d]$ inductively.

- We construct $f_d : \mathbb{F}_2^d \to [0, d]$ inductively.
- Write $d = t + 2^k$ with $0 \le t \le 2^k 1$. View $V(Q_d)$ as \mathbb{F}_2^d .

- We construct $f_d : \mathbb{F}_2^d \to [0, d]$ inductively.
- Write $d = t + 2^k$ with $0 \le t \le 2^k 1$. View $V(Q_d)$ as \mathbb{F}_2^d .
- ▶ The parity of a {0,1}-vector is given by the num. of 1 entries.

- We construct $f_d : \mathbb{F}_2^d \to [0, d]$ inductively.
- Write $d = t + 2^k$ with $0 \le t \le 2^k 1$. View $V(Q_d)$ as \mathbb{F}_2^d .
- ▶ The parity of a {0,1}-vector is given by the num. of 1 entries.
- For $u \in \mathbb{F}_2^d$, form u^- from the first t entries and u^+ from the rest.

Theorem $\chi_{os}(Q_d) = d + 1.$

- We construct $f_d : \mathbb{F}_2^d \to [0, d]$ inductively.
- Write $d = t + 2^k$ with $0 \le t \le 2^k 1$. View $V(Q_d)$ as \mathbb{F}_2^d .
- ▶ The parity of a {0,1}-vector is given by the num. of 1 entries.
- For $u \in \mathbb{F}_2^d$, form u^- from the first t entries and u^+ from the rest.

• If u^+ is even, then set $f_d(u) = f_t(u^-) \in [0, t]$.

- We construct $f_d : \mathbb{F}_2^d \to [0, d]$ inductively.
- Write $d = t + 2^k$ with $0 \le t \le 2^k 1$. View $V(Q_d)$ as \mathbb{F}_2^d .
- ▶ The parity of a {0,1}-vector is given by the num. of 1 entries.
- For $u \in \mathbb{F}_2^d$, form u^- from the first t entries and u^+ from the rest.

- If u^+ is even, then set $f_d(u) = f_t(u^-) \in [0, t]$.
- Colors in the range [0, t] are low.

• If u^+ is even, then set $f_d(u) = f_t(u^-) \in [0, t]$.

- If u^+ is even, then set $f_d(u) = f_t(u^-) \in [0, t]$.
- Otherwise u^+ is odd. Construct a $(k \times d)$ -matrix A:

$$A = \begin{bmatrix} t & t \\ 0 & t \\ cols. & in \\ \mathbb{F}_2^k - \{0\} \end{bmatrix}$$
 Distinct cols. in
 \mathbb{F}_2^k

- If u^+ is even, then set $f_d(u) = f_t(u^-) \in [0, t]$.
- Otherwise u^+ is odd. Construct a $(k \times d)$ -matrix A:

$$A = \begin{bmatrix} t & 2^k \\ Distinct \\ cols. in \\ \mathbb{F}_2^k - \{0\} \end{bmatrix} \quad \begin{array}{c} Distinct cols. in \\ \mathbb{F}_2^k \end{bmatrix}$$

• Set $f_d(u) = \phi(Au)$, where $\phi: \mathbb{F}_2^k \to [t+1, d]$ is a bijection.

- If u^+ is even, then set $f_d(u) = f_t(u^-) \in [0, t]$.
- Otherwise u^+ is odd. Construct a $(k \times d)$ -matrix A:

$$A = \begin{bmatrix} t & 2^k \\ Distinct \\ cols. in \\ \mathbb{F}_2^k - \{0\} \end{bmatrix} \quad \begin{array}{c} Distinct cols. in \\ \mathbb{F}_2^k \end{bmatrix}$$

Set f_d(u) = φ(Au), where φ: 𝔽^k₂ → [t + 1, d] is a bijection.
Colors in [t + 1, d] are high.

- If u^+ is even, then set $f_d(u) = f_t(u^-) \in [0, t]$.
- Otherwise u^+ is odd. Construct a $(k \times d)$ -matrix A:

- Set $f_d(u) = \phi(Au)$, where $\phi: \mathbb{F}_2^k \to [t+1, d]$ is a bijection.
- Colors in [t + 1, d] are high.
- Correctness reduces to checking a few cases.