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Problem advertisement

I A k-coloring φ : [n]→ [k] is good if every 3-AP a− d , a, a + d
with φ(a− d) = φ(a + d) has φ(a) > φ(a− d).

I Let f (n) be the min. k such that good k-colorings of [n] exist.

Question
What is the growth rate of f (n)?
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I A star-coloring of G is a partition of V (G ) into independent
sets V1, . . . ,Vk such that Vi ∪ Vj induces a star forest.

I The star chromatic number, denoted χs(G ), is the minimum
number of parts needed.
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I A distance 2-coloring of G is a partition of V (G ) into
independent sets V1, . . . ,Vk such that Vi ∪ Vj induces a
graph with max. degree at most 1.

I It is also χ(G 2), the chromatic number of the distance square
graph G 2.
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I In an ordered star coloring, if u and v share a color, then
every common neighbor has a higher color.
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Proposition

χos(G ) ≥ δ(G ) + 1.

Proof.

I Let v ∈ V (G ) have smallest color.

I All colors in N(v) are distinct.

I With v , this gives d(v) + 1 colors.
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Prior work

I A generalization of ordered star coloring was first studied by
Karpas, Neiman, and Smorodinsky (2015).

Theorem (KNS 2015)

I If G is an n-vertex d-degenerate graph, then
χos(G ) ≤ d(4

√
n + 1).

I There is an n-vertex 2-degenerate graph G such that
χos(G ) ≥ Ω(n1/3).
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The hypercube

I The d-dimensional cube, denoted Qd has vertex set {0, 1}d
with two vertices adjacent if and only if they differ in exactly
one coordinate.

I Fertin–Raspaud–Reed (2004): (d + 2)/3 ≤ χs(Qd) ≤ d + 1.

Theorem
χos(Qd) = d + 1

I Lower bound: χos(G ) ≥ δ(G ) + 1

I Upper bound: easy when d = 2k − 1, as we may use a perfect
linear code (even gives χ(Q2

d) = d + 1).

I Trickier for general d .
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Complete bipartite graphs

I We are particularly interested in χos(Km�Kn).

I To show χos(Km�Kn) ≤ t, we construct an (m × n)-matrix
with entries in [t] such that

α

α> α

> α

I Rows and columns have
distinct entries.

I If Aij = Ak`, then

the
corners Aik and Aj`

have higher entries.
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Bounds on χos(Km�Kn)

Lemma
In an ordered star coloring of Km�Kn, each column of height m
contains k colors which are assigned to at most k vertices for
1 ≤ k ≤ m.

α
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α

α
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n

I Let S be the set of the k
highest entries in a column.

I Let α ∈ S .

I Each vertex with color α
shares a row with an entry
in S .

I At most k vertices have
color α.
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χos(Km�Kn) ≥ nHm, where Hm = 1 + 1
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Theorem
If m! | n, then χos(Km�Kn) = nHm.

Corollary

If m is fixed and n→∞, then χos(Km�Kn) = (1 + o(1))n ln m.
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The diagonal case

Proposition

If m ≤ n and both are powers of 2, then χos(Km�Kn) ≤ nmlg 3−1.

m

n

S0

S0S1

S2

I Partition the matrix into quadrants.

I Color recursively, using color sets S0,S1,S2 with S0 < S1 < S2.

I χos(Km�Kn) ≤ 3χos(Km/2�Kn/2).



The diagonal case

Proposition

If m ≤ n and both are powers of 2, then χos(Km�Kn) ≤ nmlg 3−1.

m

n

S0

S0S1

S2

I Partition the matrix into quadrants.

I Color recursively, using color sets S0,S1,S2 with S0 < S1 < S2.

I χos(Km�Kn) ≤ 3χos(Km/2�Kn/2).



The diagonal case

Proposition

If m ≤ n and both are powers of 2, then χos(Km�Kn) ≤ nmlg 3−1.

m

n

S0

S0S1

S2

I Partition the matrix into quadrants.

I Color recursively, using color sets S0,S1, S2 with S0 < S1 < S2.

I χos(Km�Kn) ≤ 3χos(Km/2�Kn/2).



The diagonal case

Proposition

If m ≤ n and both are powers of 2, then χos(Km�Kn) ≤ nmlg 3−1.

m

n

S0

S0S1

S2

I Partition the matrix into quadrants.

I Color recursively, using color sets S0,S1, S2 with S0 < S1 < S2.

I χos(Km�Kn) ≤ 3χos(Km/2�Kn/2).



The diagonal case

Proposition

If m ≤ n and both are powers of 2, then χos(Km�Kn) ≤ nmlg 3−1.

Corollary

If m ≤ n, then χos(Km�Kn) ≤ 3nmlg 3−1 ≈ 3nm0.585.

I Ω(n log n) ≤ χos(Kn�Kn) ≤ O(n1.585)



The diagonal case

Proposition

If m ≤ n and both are powers of 2, then χos(Km�Kn) ≤ nmlg 3−1.

Corollary

If m ≤ n, then χos(Km�Kn) ≤ 3nmlg 3−1 ≈ 3nm0.585.

I Ω(n log n) ≤ χos(Kn�Kn) ≤ O(n1.585)



Connection to advertised problem

I Note: χ′os(G ) is the minimum k such that E (G ) can be
partitioned into matchings M1, . . . ,Mk such that Mj is
induced in the spanning subgraph with edge set M1 ∪ · · · ∪Mj .

I Using the famous construction of Behrend giving a subset of

[n] of size n
1−O( 1√

log n
)

with no 3 term arithmetic progressions,

one can construct Ruzsa–Szemerédi graphs with n
2−O( 1√

log n
)

edges that can be partitioned into n induced matchings.

I An analogue for χ′os(Kn,n) is available.

I A k-coloring φ : [n]→ [k] is good if every 3-AP a− d , a, a + d
with φ(a− d) = φ(a + d) has φ(a) > φ(a− d).

I Let f (n) be the min. k such that good k-colorings of [n] exist.

Proposition

χos(Km�Kn) = χ′os(Kn,n) ≤ (2n − 1)f (2n − 1)
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Proposition

χos(Km�Kn) = χ′os(Kn,n) ≤ (2n − 1)f (2n − 1)
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Summary

I If m! | n, then χ′os(Km,n) = nHm = (1 + o(1))n ln m.

I Ω(n log n) ≤ χ′os(Kn,n) ≤ O(n1.585).

I Ω(log n) ≤ f (n) ≤ O(n0.631).

I Dvǒrák–Mohar–Šámal: 2n(1 + o(1)) ≤ χ′s(Kn) ≤ n
1+O( 1√

log n
)
.

Open Problems

Determine the order of growth of:

I χ′os(Kn,n) and χ′os(Kn)

I f (n)

I DMŠ: χ′s(Kn)

I KNS: The max. of χos(G ) over n-vertex 2-degenerate graphs.
(Between Ω(n1/3) and O(n1/2).)

Thank You.
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I DMŠ: χ′s(Kn)

I KNS: The max. of χos(G ) over n-vertex 2-degenerate graphs.
(Between Ω(n1/3) and O(n1/2).)

Thank You.



Summary

I If m! | n, then χ′os(Km,n) = nHm = (1 + o(1))n ln m.

I Ω(n log n) ≤ χ′os(Kn,n) ≤ O(n1.585).

I Ω(log n) ≤ f (n) ≤ O(n0.631).
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Appendix: hypercube details

Theorem
χos(Qd) = d + 1.

I We construct fd : Fd
2 → [0, d ] inductively.

I Write d = t + 2k with 0 ≤ t ≤ 2k − 1. View V (Qd) as Fd
2 .

I The parity of a {0, 1}-vector is given by the num. of 1 entries.

I For u ∈ Fd
2 , form u− from the first t entries and u+ from the

rest.

u− u+

t 2k

I If u+ is even, then set fd(u) = ft(u−) ∈ [0, t].

I Colors in the range [0, t] are low.
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Theorem
χos(Qd) = d + 1.

u− u+

t 2k

I If u+ is even, then set fd(u) = ft(u−) ∈ [0, t].

I Otherwise u+ is odd. Construct a (k × d)-matrix A:

t 2k

kA =

Distinct
cols. in
Fk
2 −{0}

Distinct cols. in
Fk
2

I Set fd(u) = φ(Au), where φ : Fk
2 → [t + 1, d ] is a bijection.

I Colors in [t + 1, d ] are high.

I Correctness reduces to checking a few cases.
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