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Question
What is the growth rate of f(n)?
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» An ordered star-coloring of G is a partition of V(G) into
independent sets Vi, ..., Vi such that for i < j, the vertices
in V; U V; induce a star forest with centers in V;.

» The ordered star chromatic number, denoted y.s(G), is the
min. number of parts needed.
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» A distance 2-coloring of G is a partition of V(G) into
independent sets V1, ..., V) such that V; U V; induces a
graph with max. degree at most 1.
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» A distance 2-coloring of G is a partition of V(G) into
independent sets V4, ..., V) such that V; U V; induces a
graph with max. degree at most 1.
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» A distance 2-coloring of G is a partition of V(G) into
independent sets V4, ..., V) such that V; U V; induces a
graph with max. degree at most 1.

» It is also \(G?), the chromatic number of the distance square
graph G2,
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» Clearly, x5(G) < xos(G) < x(G?).
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» Clearly, xs(G) < xos(G) < x(G?).

> In an ordered star coloring, if u and v share a color, then
every common neighbor has a higher color.
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Proposition
Xos(G) > 6(G) + 1.
Proof.

—
=

V;
Xos(G)

Vj

> Let v € V(G) have smallest color.

» All colors in N(v) are distinct.
» With v, this gives d(v) + 1 colors.
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Prior work

» A generalization of ordered star coloring was first studied by
Karpas, Neiman, and Smorodinsky (2015).

Theorem (KNS 2015)

» If G is an n-vertex d-degenerate graph, then
Xos(G) < d(4y/n+1).

> There is an n-vertex 2-degenerate graph G such that
Xos(G) = Q(n'/3).
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The hypercube

» The d-dimensional cube, denoted @4 has vertex set {0,1}9
with two vertices adjacent if and only if they differ in exactly
one coordinate.

» Fertin—Raspaud—Reed (2004): (d +2)/3 < xs(Qq) < d + 1.

Theorem
XOS(Qd) =d+1

» Lower bound: xos(G) > 6(G) + 1

» Upper bound: easy when d = 2% — 1, as we may use a perfect
linear code (even gives x(Q3) = d +1).

» Trickier for general d.
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Complete bipartite graphs

» We are particularly interested in xos(Km O Kp).

» To show xos(KmOKy,) < t, we construct an (m x n)-matrix
with entries in [t] such that

» Rows and columns have
distinct entries.

> If Aj = Ak, then the
corners Ay and Aj,
>« @ have higher entries.
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Bounds on ys(Kn O K,)

Lemma
In an ordered star coloring of K, [J K, each column of height m
contains k colors which are assigned to at most k vertices for

1< k<m.
> Let S be the set of the k
highest entries in a column.
@ > Let a € S.
» Each vertex with color «
<a " shares a row with an entry

inS.



Bounds on ys(Kn O K,)

Lemma

In an ordered star coloring of K, [J K, each column of height m
contains k colors which are assigned to at most k vertices for
1< k<m.

» Let S be the set of the k
® highest entries in a column.
> leta € S.

» Each vertex with color a
shares a row with an entry
inS.

» At most k vertices have
color a.
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Lemma

In an ordered star coloring of K, [J K, each column of height m
contains k colors which are assigned to at most k vertices for
1< k<m.

Theorem
Xos(Km O Kn) > nHpm, where Hpy =1+ 3 + -+ +
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Bounds on ys(Kn O K,)

Lemma

In an ordered star coloring of K, [J K, each column of height m
contains k colors which are assigned to at most k vertices for
1< k<m.

Theorem

Xos(Km O Kn) > nHpm, where Hpy =1+ 3+ + L.
Theorem

If m!'| n, then Xos(Km O K,) = nHp,.

Corollary
If m is fixed and n — oo, then xos(Km O Kp) = (14 o(1))nInm.
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The diagonal case

Proposition
If m < n and both are powers of 2, then yos(Kmn OK,) < nm'e3-1

So S

S So

—23

» Partition the matrix into quadrants.
» Color recursively, using color sets Sg, S1, S> with S5 < 51 < S,.
> Xos(Km 0 Kn) < 3XOS(Km/2 U Kn/2)-
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The diagonal case

Proposition
If m < n and both are powers of 2, then yos(Kmn OK,) < nm'e3-1

Corollary
If m < n, then Xos(KmOKp,) < 3nm'83~1 ~ 3nm0-585,

» Q(nlogn) < Xos(Kn O K,) < O(nt58%)
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Connection to advertised problem

» A k-coloring ¢ : [n] — [k] is good if every 3-AP a—d,a,a+d
with ¢(a — d) = ¢(a+ d) has ¢(a) > ¢(a — d).
» Let f(n) be the min. k such that good k-colorings of [n] exist.

Proposition
Xos(Kim D Kn) = Xos(Kn,n) < (20— 1)f(2n — 1)
» To bound f(n), a similar recursive construction gives
f(n) < O(ni3) < O(n0831).

» With Proposition, this gives x.i(Kn.n) < O(n'531), but so far
no improvement over the earlier bound.
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Summary

> If m!| n, then x,(Km.n) = nHm = (1 + o(1))nIn m.
> Q(nlogn) < X)s(Knn) < O(n58%).
» Q(logn) < f(n) < O(n0'631).

» Dvordk-Mohar-Samal: 2n(1 + o(1)) < x4(Kn) < Ol
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Open Problems
Determine the order of growth of:
> Xos(Kn,n) and xos(Kn)
> (n)
» DMS: X.(K,)
» KNS: The max. of xos(G) over n-vertex 2-degenerate graphs.
(Between Q(n'/3) and O(n'/?).)

Thank You.
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Set fy(u) = ¢(Au), where ¢: F5 — [t +1,d] is a bijection.
Colors in [t + 1,d] are high.
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Theorem
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If u™ is even, then set fy(u) = f(u™) € [0, t].

» Otherwise u™ is odd. Construct a (k x d)-matrix A:
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Set fy(u) = ¢(Au), where ¢: F5 — [t +1,d] is a bijection.
Colors in [t + 1,d] are high.
Correctness reduces to checking a few cases.
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