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Abstract

We prove that every graph consisting of a spanning cycle plus p chords has cycles
with more than /p — %ln p — 2 different lengths. The result is asymptotically sharp in
the sense that when p = n?/4—n there are exactly /p + 1 lengths of cycles in K /2m)2-
For general m and n, there are Hamiltonian graphs with n vertices and m edges having

at most 2 [\/m —n + 1| different cycle lengths.
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1 Introduction

The cycle spectrum of a graph G is the set of lengths of cycles in G. A cycle containing all
vertices of a graph is a spanning or Hamiltonian cycle, and a graph having such a cycle is a
Hamiltonian graph. An n-vertex graph is pancyclic if its cycle spectrum is {3,...,n}. Our
graphs have no loops or multiple edges. A graph is k-regular if every vertex has degree k
(that is, k incident edges).

Interest in cycle spectra arose from Bondy’s “Metaconjecture” (based on [3]) that suffi-
cient conditions for the existence of Hamiltonian cycles usually also imply that a graph is
pancyclic, with possibly a small family of exceptions. For example, Bondy [3] showed that
the sufficient condition on n-vertex graphs due to Ore [15] (the degrees of any two nonadja-
cent vertices sum to at least n) implies also that G is pancyclic or is the complete bipartite
graph Kn ». Schmeichel and Hakimi [12] showed that if a spanning cycle in an n-vertex
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graph G has consecutive vertices with degree-sum at least n, then GG is pancyclic or bipartite
or omits only n — 1 from the cycle spectrum, the latter occurring only when the degree-sum
is exactly n. Bauer and Schmeichel [1] used this to give unified proofs that the conditions
for Hamiltonian cycles due to Bondy [4], Chvétal [5], and Fan [8] also imply that a graph is
pancyclic, with small families of exceptions. Further results about the cycle spectrum under
degree conditions on selected vertices in a spanning cycle appear in [9] and [13].

At the 1999 conference “Paul Erdés and His Mathematics”, Jacobson and Lehel proposed
the opposite question: When sufficient conditions for spanning cycles are relaxed, how small
can the cycle spectrum be if the graph is required to be Hamiltonian? For example, consider
regular graphs. Bondy’s result [3] implies that [n/2]-regular graphs other than Kn» n are
pancyclic. On the other hand, 2-regular Hamiltonian graphs have only one cycle length. For
3 <k <[n/2] -1, Jacobson and Lehel asked for the minimum size of the cycle spectrum of
a k-regular n-vertex Hamiltonian graph, particularly when k& = 3.

Let s(G) denote the size of the cycle spectrum of a graph G. At the SITAM Meeting on
Discrete Mathematics in 2002, Jacobson announced that he, Gould, and Pfender had proved
s(G) > cxn'/? for k-regular graphs with n vertices. Others later independently obtained
similar bounds, without seeking to optimize c;. For an upper bound, Jacobson and Lehel

constructed the 3-regular example below with only n/6-+3 distinct cycle lengths (when n =0

n k=2

mod 6 and n > 6), and they generalized it to the upper bound 7

+ k for k-regular graphs.

Example 1 When k& = 3 and 6 divides n (with n > 6), take n/6 disjoint copies of K33 in
a cyclic order, with vertex sets V;,..., V5. Remove one edge from each copy and replace it
by an edge to the next copy to restore 3-regularity. A cycle of length different from 4 or 6
must visit each V;, and in each Vj it uses 4 or 6 vertices. Hence the cycle lengths are 4, 6, and

each even integer from 2n/3 through n. For the generalization, use K}y instead of K33. O

A related problem is the conjecture of Erdds [6] that s(G) > Q (dl9=Y/2!) when G
has girth ¢ and average degree d. Erdds, Faudree, Rousseau, and Schelp [7] proved the
conjecture for g = 5. Sudakov and Verstraéte [14] proved the full conjecture in a stronger
form, obtaining % (dL(g_l)/ 2J) consecutive even integers in the cycle spectrum for graphs with
fixed girth ¢ and average degree 48(d + 1). Gould, Haxell, and Scott [10] proved a similar
result: for ¢ > 0, there is a constant k. such that for sufficiently large n, the cycle spectrum
of every n-vertex graph G having minimum degree at least cn and longest even cycle length
2] contains all even integers from 4 up to 2 — k. (see also [2]).

Prior arguments for lower bounds on s(G) when G is regular and Hamiltonian used only
the number of edges, not regularity. Suppose that G has n vertices and m edges. The
coefficient ¢ in a general lower bound of the form s(G) > +/c¢(m — n) cannot exceed 1, since
s(Kn n)=+/m—mn+1. We give a construction for m < n?/4 that is far from regular.
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Example 2 For t < n/2, form a graph G by replacing one edge of K;; with a path having
n — 2t internal vertices; there are n vertices and m edges, where m = t> — 2t +n < n?/4. The
cycle spectrum of G consists of the ¢ — 1 even numbers in {4, ..., 2t} and the ¢ — 1 numbers
from n — 2t + 4 to n having the same parity as n. Thus s(G) < 2(t — 1) = 2y/m —n + 1.
Equality holds when ¢ < [n/4], but when [n/4] <t < n/2 and n is even the two sets of
t — 1 numbers overlap (the two sets are the same when m = n?/4, reducing to s(Kz ») =
Jm—n+1).

Deleting edges cannot enlarge the cycle spectrum. Hence in general we can let ¢ =
(\/m + 1, apply the construction above for n and ¢, and discard edges to wind up
with m edges and s(G) <2 [vm —n+1].

For a graph G with m > n%/4, we have s(G) <n — 2 < 2y/m —n + 1. In fact, the main
result of [3] implies that every Hamiltonian graph with more than n?/4 edges is pancyclic.
Thus s(G) = n — 2 when m > n?/4.

Possibly this construction usually has the smallest spectrum among Hamiltonian graphs
with n vertices and m edges. However, when (n,m) = (14,21), the Heawood graph has

smaller spectrum than the graph constructed in this way. O

Our main result is s(G) > \/p — %ln p — 2 when G consists of an n-cycle with p chords.

2 The Lower Bound

A path with endpoints x and y is an x, y-path. A chord of a path (or cycle) P in a graph is
an edge of the graph not in P whose endpoints are in P, and the length of the chord is the
distance in P between its endpoints. Given a path P with vertices v ,...,v, in order, two
chords v,v. and vyvg overlap if a < b < ¢ < d.

Lemma 3 If a graph G consists of an xz,y-path P and h pairwise-overlapping chords of
length , then G contains x,y-paths having at least h — 1 distinct lengths. Having only h — 1
lengths requires | odd, h > (I + 3)/2, and chords starting at h consecutive vertices along P.

Proof. For h < 2, there are at least h distinct lengths, so we may assume h > 3. Let n
be the length of P. Let eq,..., e, be the chords in the order in which they are encountered
along P from x to y. Let d; be the distance along P from the first endpoint of ¢;_; to the
first endpoint of ¢;, for 2 <7 < h.

Let P;; be the unique x,y-path using exactly two chords e; and e;, along with edges of
P. Let p; be the length of P, j, for 2 < j < h. Note that p; = p;—1 —2d; for 3 < j < h. The
h — 1 paths P, ..., P, have distinct lengths, which proves the first statement.



The length of P o is n — 2dy + 2. Thus the full path P provides an additional length
unless dy = 1. If d; > 1 for any larger j, then the length of P, is strictly between p;_; and
pj. Hence an extra length arises unless the chords start at consecutive vertices along P.

The h — 1 lengths we have found are n,n—2,...,n—2h+4. The length of any x, y-path
that uses exactly one chord is n — [ 4 1. To avoid generating a new length, it must be that
lis odd and 2h —4 > 1 — 1. O

Definition 4 Let G be a graph consisting of an n-cycle C' plus ¢ chords of length [, where
[ < n/2. Say that a chord covers the edges and the internal vertices of the path of length [
along C' joining its endpoints. Specify a forward direction along C. Let C|xz,y] denote the
subpath of C' traversed by moving from z to y along C' in the forward direction. When uv
is a chord of length [ and C[u,v] has length [, we say that u is the start and v is the end of
uv. For a chord e, let F'(e) be the set consisting of e and all chords that cover the end of e.

Select a chord ey so that |F/(ey)| > |F(e)| for every chord e. For j > 1, let e; be the first
chord encountered in the forward direction from e;_; that does not overlap e;_; or e;; if no
such chord exists, then stop and set « = j—1. Note that F'(e;)N{e1,...,e.} = {e;} for each i
and that the sets F(ey),. .., F(e,) are pairwise disjoint. The selected edges {e1, ..., e,} form
a greedy chord system for G (see Figure 1, which also includes notation used in Theorem 5).

Given a greedy chord system starting with e, let v; be the start of e;. Let the vertices of
C be vy,...,v, in order in the forward direction. In the case o > 2, let z be the end of ey,
and say that a cycle in G is long if it contains C[z, v1] and has length at least n—2(1 —1) + 1.

o e* F* ep.  F'=F(e) €
Vj Uk Up U1 w Z

Figure 1: A greedy chord system

From a greedy chord system, we will build a large family of cycles with distinct lengths
by combining cycles of length at most n — a(l — 1) + 2, intermediate-length cycles, and long
cycles. The intermediate-length cycles are formed from the long cycles by replacing portions
of C' with chords.

Theorem 5 Let G be a graph consisting of an n-cycle C plus q chords of length [, where
I <n/2. The size s(G) of the cycle spectrum of G is at least (¢ — 3)/2 when [ is even and
at least (¢ —3 — %)/2 when 1 is odd.



Proof. Consider a greedy chord system ey, ..., e,. Let F = F(e;). Let w be the end of
the chord in F’ that overlaps e; the least. Let F* be the set of chords not in (J;_, F(e;);
since none of these chords overlaps e, each overlaps e;. If F* # @, then let e* be the first
chord of F* after e, in the forward direction (see Figure 1).

When o = 1, we have |F'| + |F*| = ¢. If also F* = &, then |F'| = ¢; otherwise,
F* C F(e*). Hence |F'| > [q/2]. Lemma 3 yields vy, w-paths of at least |F’| — 1 lengths
that combine with C|w, v;] to form cycles of |F’| — 1 distinct lengths. Hence we may assume
a > 2.

Using F*, we now obtain (|F™*| — 1)/2 short cycle lengths. We may assume |F*| > 2.
Let j be the index of the start of e*; that is, e = v;v;4,—,. Through each chord vyvi4i—p
in F* — {e*}, we consider two cycles. One uses vjvj+;—, and e* and the two paths Cv;, v]
and C[vj4i—n, Vk+1—n) with length & — j (see Figure 1). The other uses vyvgi;—n, and e; and
the two paths Clug,v1] and Clvgy_n, v14] with length n — k 4+ 1. The lengths of the cycles
are 2(k — 7 + 1) and 2(n — k + 2); their minimum is at most n — j + 3.

Thus we obtain |F*| — 1 cycles having length at most n — j 4+ 3, with each such length
occurring at most twice. We conclude that the spectrum contains at least (|F*|—1)/2 values
bounded by n—j+3. The index of the end of ¢, is at least 1+a(l—1). Hence j > 14+a(l—1),
and the lengths of the short cycles are bounded by n — a(l — 1) + 2.

From the long cycles in G we now construct cycles of intermediate lengths; let p be the
number of distinct lengths of long cycles. Since long cycles contain C|[z, v1], they contain all
edges of C covered by any of e3,...,e,. These chords can be used to replace portions of
long cycles. Each such replacement yields cycles of p distinct lengths, shorter by [ — 1 than
the lengths we previously had. Since the long cycles have length at least n — 2(1 — 1) + 1,
performing this shift o — 2 times produces o — 1 sets of size p. Values are generated at most
twice; the original values exceeding n—(I—1) and the values that are at most n—(a—1)(l—1)
appear only once. Repeating these p values yields a list of ap values in which each value
appears at most twice. Hence we obtain at least ap/2 cycle lengths that are all at least
n — a(l — 1) + 1. Since the short cycle lengths are all even, at most one of the short lengths
is repeated in this set.

The greedy choice of e yields |F'| > [%W To obtain a useful lower bound on ap/2,
we compare p to |F’|. Let G’ be the induced subgraph of G consisting of Cvy, w] and the
chords in F”. Since the chords in F” are pairwise overlapping, Lemma 3 yields vy, w-paths in
G’ with |F'| — 1 distinct lengths. Furthermore, there are at least |F”’| distinct lengths unless
lis odd, |F'| > (I + 3)/2, and the starts of the chords in F” are consecutive along C'.

If w = vy 1, then the greedy choice of e; implies that the chords are pairwise noncrossing
and s(G) = ¢+ 1. We may thus assume w # v;41, so every vy, w-path in G’ has length at
least 2. Adding Cfw,v;] to vy, w-paths of distinct lengths in G’ creates cycles of distinct



lengths in G. Since at least n — 2] 4+ 1 edges of C' are not in GG’, these cycles are long cycles.
Thus when [ is even, we have shown that p > |F’|. Hence

ap | |F7| -1 q—|F| | [Fr -1 q—3
o> T =12
(@) 2 5+ =Ty T 2

If [ is odd, then p > [%W still holds if |F'| > {%—‘ Since always |F'| > {@W,
we may assume that equality holds. If p > |F’| does not hold, then Lemma 3 implies that
|F'| > (I +3)/2 and that the chords in F’ are consecutive. Hence the lengths of the long
cycles aren,n—2,...,n—2|F'|4+4. We consider two cases, depending on whether ey overlaps
some chord in F”.

Case 1: ey overlaps no chord in F'. Here ey, like e3, ..., e,, can be used to reduce cycle
lengths by [ —1. Since |F'| > (I+3)/2, the long cycle lengths include n,n—2,...,n—(I—1);
there are (I + 1)/2 of them. Hence shifting the values down by [ — 1 leaves no gaps. After
using each of eq, ..., e, to reduce the lengths by [ — 1, we obtain 1+ «(l — 1)/2 consecutive
lengths of the same parity. Omitting the smallest, we have %a(l — 1) cycle lengths, each at
least n —a(l — 1) + 2.

If a > g/l, then sa(l—1) > 1¢(1 — 1) > (¢ — |F*| = 9). If & < g/I, then we use
I >|F| = {%-‘ to compute

1

1 1 1 q
- o > A > o *| - o o
Sall=1) = 5(F| = a = 5= [F|=a) > 5 (¢ = [F'| - ])

Length n — «(l — 1) + 2 may also be counted among the short cycle lengths. Adding the
(|F*|—1)/2 short lengths and subtracting 1 for the possible overlap yields at least the desired
number of lengths.

Case 2: ey overlaps some chord in F'. Since the chords in I are consecutive, this case
requires that the start of es is just before the end of some chord ¢’ in F’. Let v’ be the start
of €. The cycle that uses these two chords, the edge they both cover, and C|z,v'] has length
n —2(l — 1) + 2; hence it is a long cycle. We obtain p > |F’| unless this length already
appears among those we have generated, which requires 2 |F'| —4 > 2(1—1) — 2, so |F'| > L.
Since |F'| < I, equality holds.

As noted above, we have n,n —2,...,n—2(l —2) as [ — 1 distinct cycle lengths, all long.
Lowering the bottom half of them by [ — 1 exactly a — 2 times yields %a(l — 1) distinct cycle
lengths. The least of them is n — (I — 1) 4 2. This is exactly the same situation we obtained
in Case 1, so the same computation completes the proof. O

Theorem 6 IfG is an n-vertex Hamiltonian graph with m edges, then s(G) > p—% Inp—2,
where p =m — n.



Proof. Let C' be a spanning cycle in G. Let L be the set of lengths of chords of C' in G,
and let ¢ = |L|. For each [ € L, we obtain two lengths of cycles in G; they are [ + 1 and
n—1+1if [ < n/2 (using one chord of length [), and they are n/2 + 1 and n if [ = n/2.
Hence s(G) > 2t, which suffices if t > %\/]_9 We may therefore assume that 2t < /p.

For [ € L, let ¢; be the number of chords of length [. By Theorem 5, when | < n/2 there
are at least l;—llql — g lengths of cycles using only edges of C' and chords of length [. The
lower bound also holds when | = n/2, since then the chords are pairwise overlapping and
Lemma 3 applies, and always ¢ — 1 > l;—llql — %

We may assume that l;—llql—% < \/ﬁ—%lnp—2 forodd [ € L, and %ql—% < ﬁ—%lnp—Z
for even [ € L. Thus ¢, < (\/ﬁ — %lnp — %)cl, where ¢; = 2 when [ is even and ¢ = 2 + %
when [ is odd. We obtain a contradiction by showing that these bounds on ¢ sum to less
than p. In light of the form of ¢;, it suffices to prove this when all values in L are odd. The
bound is now the worst when L consists of the first ¢ positive odd numbers. We compute

2

t

1

p= a<) (Vp—3hp—3) (2+l_—1) < (VP-dlp-3) |24+ -
leL leL i=1

<(Vp—slmp-1)[Vp+(1+Int)] < (Vp—ilnp—3)[Vp+ilnp+ (1 —In2)
=p—1(np)?>—(In2-3),/p— 13-4 Inp—3(1-In2) < p.

The contradiction completes the proof. O
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