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Abstract

We prove that every graph consisting of a spanning cycle plus p chords has cycles

with more than
√

p− 1
2 ln p− 2 different lengths. The result is asymptotically sharp in

the sense that when p = n2/4−n there are exactly
√

p + 1 lengths of cycles in Kn/2,n/2.

For general m and n, there are Hamiltonian graphs with n vertices and m edges having

at most 2
⌈√

m − n + 1
⌉

different cycle lengths.
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1 Introduction

The cycle spectrum of a graph G is the set of lengths of cycles in G. A cycle containing all

vertices of a graph is a spanning or Hamiltonian cycle, and a graph having such a cycle is a

Hamiltonian graph. An n-vertex graph is pancyclic if its cycle spectrum is {3, . . . , n}. Our

graphs have no loops or multiple edges. A graph is k-regular if every vertex has degree k

(that is, k incident edges).

Interest in cycle spectra arose from Bondy’s “Metaconjecture” (based on [3]) that suffi-

cient conditions for the existence of Hamiltonian cycles usually also imply that a graph is

pancyclic, with possibly a small family of exceptions. For example, Bondy [3] showed that

the sufficient condition on n-vertex graphs due to Ore [15] (the degrees of any two nonadja-

cent vertices sum to at least n) implies also that G is pancyclic or is the complete bipartite

graph Kn

2
, n

2
. Schmeichel and Hakimi [12] showed that if a spanning cycle in an n-vertex
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graph G has consecutive vertices with degree-sum at least n, then G is pancyclic or bipartite

or omits only n− 1 from the cycle spectrum, the latter occurring only when the degree-sum

is exactly n. Bauer and Schmeichel [1] used this to give unified proofs that the conditions

for Hamiltonian cycles due to Bondy [4], Chvátal [5], and Fan [8] also imply that a graph is

pancyclic, with small families of exceptions. Further results about the cycle spectrum under

degree conditions on selected vertices in a spanning cycle appear in [9] and [13].

At the 1999 conference “Paul Erdős and His Mathematics”, Jacobson and Lehel proposed

the opposite question: When sufficient conditions for spanning cycles are relaxed, how small

can the cycle spectrum be if the graph is required to be Hamiltonian? For example, consider

regular graphs. Bondy’s result [3] implies that ⌈n/2⌉-regular graphs other than Kn

2
, n

2
are

pancyclic. On the other hand, 2-regular Hamiltonian graphs have only one cycle length. For

3 ≤ k ≤ ⌈n/2⌉− 1, Jacobson and Lehel asked for the minimum size of the cycle spectrum of

a k-regular n-vertex Hamiltonian graph, particularly when k = 3.

Let s(G) denote the size of the cycle spectrum of a graph G. At the SIAM Meeting on

Discrete Mathematics in 2002, Jacobson announced that he, Gould, and Pfender had proved

s(G) ≥ ckn
1/2 for k-regular graphs with n vertices. Others later independently obtained

similar bounds, without seeking to optimize ck. For an upper bound, Jacobson and Lehel

constructed the 3-regular example below with only n/6+3 distinct cycle lengths (when n ≡ 0

mod 6 and n > 6), and they generalized it to the upper bound n
2

k−2
k

+k for k-regular graphs.

Example 1 When k = 3 and 6 divides n (with n > 6), take n/6 disjoint copies of K3,3 in

a cyclic order, with vertex sets V1, . . . , Vn/6. Remove one edge from each copy and replace it

by an edge to the next copy to restore 3-regularity. A cycle of length different from 4 or 6

must visit each Vi, and in each Vi it uses 4 or 6 vertices. Hence the cycle lengths are 4, 6, and

each even integer from 2n/3 through n. For the generalization, use Kk,k instead of K3,3. 2

A related problem is the conjecture of Erdős [6] that s(G) ≥ Ω
(

d⌊(g−1)/2⌋
)

when G

has girth g and average degree d. Erdős, Faudree, Rousseau, and Schelp [7] proved the

conjecture for g = 5. Sudakov and Verstraëte [14] proved the full conjecture in a stronger

form, obtaining 1
8

(

d⌊(g−1)/2⌋
)

consecutive even integers in the cycle spectrum for graphs with

fixed girth g and average degree 48(d + 1). Gould, Haxell, and Scott [10] proved a similar

result: for c > 0, there is a constant kc such that for sufficiently large n, the cycle spectrum

of every n-vertex graph G having minimum degree at least cn and longest even cycle length

2l contains all even integers from 4 up to 2l − kc (see also [2]).

Prior arguments for lower bounds on s(G) when G is regular and Hamiltonian used only

the number of edges, not regularity. Suppose that G has n vertices and m edges. The

coefficient c in a general lower bound of the form s(G) ≥
√

c(m − n) cannot exceed 1, since

s(Kn

2
, n

2
) =

√
m − n + 1. We give a construction for m ≤ n2/4 that is far from regular.
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Example 2 For t ≤ n/2, form a graph G by replacing one edge of Kt,t with a path having

n−2t internal vertices; there are n vertices and m edges, where m = t2−2t+n ≤ n2/4. The

cycle spectrum of G consists of the t− 1 even numbers in {4, . . . , 2t} and the t− 1 numbers

from n − 2t + 4 to n having the same parity as n. Thus s(G) ≤ 2(t − 1) = 2
√

m − n + 1.

Equality holds when t ≤ ⌈n/4⌉, but when ⌈n/4⌉ < t ≤ n/2 and n is even the two sets of

t − 1 numbers overlap (the two sets are the same when m = n2/4, reducing to s(Kn

2
, n

2
) =√

m − n + 1).

Deleting edges cannot enlarge the cycle spectrum. Hence in general we can let t =
⌈√

m − n + 1
⌉

+ 1, apply the construction above for n and t, and discard edges to wind up

with m edges and s(G) ≤ 2
⌈√

m − n + 1
⌉

.

For a graph G with m > n2/4, we have s(G) ≤ n − 2 ≤ 2
√

m − n + 1. In fact, the main

result of [3] implies that every Hamiltonian graph with more than n2/4 edges is pancyclic.

Thus s(G) = n − 2 when m > n2/4.

Possibly this construction usually has the smallest spectrum among Hamiltonian graphs

with n vertices and m edges. However, when (n,m) = (14, 21), the Heawood graph has

smaller spectrum than the graph constructed in this way. 2

Our main result is s(G) >
√

p− 1
2
ln p− 2 when G consists of an n-cycle with p chords.

2 The Lower Bound

A path with endpoints x and y is an x, y-path. A chord of a path (or cycle) P in a graph is

an edge of the graph not in P whose endpoints are in P , and the length of the chord is the

distance in P between its endpoints. Given a path P with vertices v1 , . . . , vn in order, two

chords vavc and vbvd overlap if a < b < c < d.

Lemma 3 If a graph G consists of an x, y-path P and h pairwise-overlapping chords of

length l, then G contains x, y-paths having at least h− 1 distinct lengths. Having only h− 1

lengths requires l odd, h ≥ (l + 3)/2, and chords starting at h consecutive vertices along P .

Proof. For h ≤ 2, there are at least h distinct lengths, so we may assume h ≥ 3. Let n

be the length of P . Let e1 , . . . , eh be the chords in the order in which they are encountered

along P from x to y. Let di be the distance along P from the first endpoint of ei−1 to the

first endpoint of ei, for 2 ≤ i ≤ h.

Let Pi,j be the unique x, y-path using exactly two chords ei and ej, along with edges of

P . Let pj be the length of P1,j, for 2 ≤ j ≤ h. Note that pj = pj−1 − 2dj for 3 ≤ j ≤ h. The

h − 1 paths P1,2, . . . , P1,h have distinct lengths, which proves the first statement.
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The length of P1,2 is n − 2d2 + 2. Thus the full path P provides an additional length

unless d2 = 1. If dj > 1 for any larger j, then the length of P2,j is strictly between pj−1 and

pj. Hence an extra length arises unless the chords start at consecutive vertices along P .

The h− 1 lengths we have found are n, n− 2, . . . , n− 2h+4. The length of any x, y-path

that uses exactly one chord is n − l + 1. To avoid generating a new length, it must be that

l is odd and 2h − 4 ≥ l − 1. 2

Definition 4 Let G be a graph consisting of an n-cycle C plus q chords of length l, where

l < n/2. Say that a chord covers the edges and the internal vertices of the path of length l

along C joining its endpoints. Specify a forward direction along C. Let C[x, y] denote the

subpath of C traversed by moving from x to y along C in the forward direction. When uv

is a chord of length l and C[u, v] has length l, we say that u is the start and v is the end of

uv. For a chord e, let F (e) be the set consisting of e and all chords that cover the end of e.

Select a chord e1 so that |F (e1)| ≥ |F (e)| for every chord e. For j > 1, let ej be the first

chord encountered in the forward direction from ej−1 that does not overlap ej−1 or e1; if no

such chord exists, then stop and set α = j−1. Note that F (ei)∩{e1 , . . . , eα} = {ei} for each i

and that the sets F (e1), . . . , F (eα) are pairwise disjoint. The selected edges {e1 , . . . , eα} form

a greedy chord system for G (see Figure 1, which also includes notation used in Theorem 5).

Given a greedy chord system starting with e1, let v1 be the start of e1. Let the vertices of

C be v1 , . . . , vn in order in the forward direction. In the case α ≥ 2, let z be the end of e2,

and say that a cycle in G is long if it contains C[z, v1] and has length at least n−2(l−1)+1.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

eα e∗ e1 e2F ∗ F ′=F (e1)

vj vk vnvj vk vn v1 w z

Figure 1: A greedy chord system

From a greedy chord system, we will build a large family of cycles with distinct lengths

by combining cycles of length at most n−α(l − 1) + 2, intermediate-length cycles, and long

cycles. The intermediate-length cycles are formed from the long cycles by replacing portions

of C with chords.

Theorem 5 Let G be a graph consisting of an n-cycle C plus q chords of length l, where

l < n/2. The size s(G) of the cycle spectrum of G is at least (q − 3)/2 when l is even and

at least (q − 3 − q
l
)/2 when l is odd.
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Proof. Consider a greedy chord system e1 , . . . , eα. Let F ′ = F (e1). Let w be the end of

the chord in F ′ that overlaps e1 the least. Let F ∗ be the set of chords not in
⋃α

i=1 F (ei);

since none of these chords overlaps eα, each overlaps e1. If F ∗ 6= ∅, then let e∗ be the first

chord of F ∗ after eα in the forward direction (see Figure 1).

When α = 1, we have |F ′| + |F ∗| = q. If also F ∗ = ∅, then |F ′| = q; otherwise,

F ∗ ⊆ F (e∗). Hence |F ′| ≥ ⌈q/2⌉. Lemma 3 yields v1, w-paths of at least |F ′| − 1 lengths

that combine with C[w, v1] to form cycles of |F ′|− 1 distinct lengths. Hence we may assume

α ≥ 2.

Using F ∗, we now obtain (|F ∗| − 1)/2 short cycle lengths. We may assume |F ∗| ≥ 2.

Let j be the index of the start of e∗; that is, e∗ = vjvj+l−n. Through each chord vkvk+l−n

in F ∗ − {e∗}, we consider two cycles. One uses vkvk+l−n and e∗ and the two paths C[vj, vk]

and C[vj+l−n, vk+l−n] with length k − j (see Figure 1). The other uses vkvk+l−n and e1 and

the two paths C[vk, v1] and C[vk+l−n, v1+l] with length n − k + 1. The lengths of the cycles

are 2(k − j + 1) and 2(n − k + 2); their minimum is at most n − j + 3.

Thus we obtain |F ∗| − 1 cycles having length at most n − j + 3, with each such length

occurring at most twice. We conclude that the spectrum contains at least (|F ∗|−1)/2 values

bounded by n−j+3. The index of the end of eα is at least 1+α(l−1). Hence j ≥ 1+α(l−1),

and the lengths of the short cycles are bounded by n − α(l − 1) + 2.

From the long cycles in G we now construct cycles of intermediate lengths; let ρ be the

number of distinct lengths of long cycles. Since long cycles contain C[z, v1], they contain all

edges of C covered by any of e3 , . . . , eα. These chords can be used to replace portions of

long cycles. Each such replacement yields cycles of ρ distinct lengths, shorter by l − 1 than

the lengths we previously had. Since the long cycles have length at least n − 2(l − 1) + 1,

performing this shift α− 2 times produces α− 1 sets of size ρ. Values are generated at most

twice; the original values exceeding n−(l−1) and the values that are at most n−(α−1)(l−1)

appear only once. Repeating these ρ values yields a list of αρ values in which each value

appears at most twice. Hence we obtain at least αρ/2 cycle lengths that are all at least

n− α(l − 1) + 1. Since the short cycle lengths are all even, at most one of the short lengths

is repeated in this set.

The greedy choice of e1 yields |F ′| ≥
⌈

q−|F ∗|
α

⌉

. To obtain a useful lower bound on αρ/2,

we compare ρ to |F ′|. Let G′ be the induced subgraph of G consisting of C[v1, w] and the

chords in F ′. Since the chords in F ′ are pairwise overlapping, Lemma 3 yields v1, w-paths in

G′ with |F ′| − 1 distinct lengths. Furthermore, there are at least |F ′| distinct lengths unless

l is odd, |F ′| ≥ (l + 3)/2, and the starts of the chords in F ′ are consecutive along C.

If w = vl+1, then the greedy choice of e1 implies that the chords are pairwise noncrossing

and s(G) = q + 1. We may thus assume w 6= vl+1, so every v1, w-path in G′ has length at

least 2. Adding C[w, v1] to v1, w-paths of distinct lengths in G′ creates cycles of distinct
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lengths in G. Since at least n− 2l + 1 edges of C are not in G′, these cycles are long cycles.

Thus when l is even, we have shown that ρ ≥ |F ′|. Hence

s(G) ≥ αρ

2
+

|F ∗| − 1

2
− 1 ≥ q − |F ∗|

2
+

|F ∗| − 1

2
− 1 =

q − 3

2
.

If l is odd, then ρ ≥
⌈

q−|F ∗|
α

⌉

still holds if |F ′| >
⌈

q−|F ∗|
α

⌉

. Since always |F ′| ≥
⌈

q−|F ∗|
α

⌉

,

we may assume that equality holds. If ρ ≥ |F ′| does not hold, then Lemma 3 implies that

|F ′| ≥ (l + 3)/2 and that the chords in F ′ are consecutive. Hence the lengths of the long

cycles are n, n−2, . . . , n−2 |F ′|+4. We consider two cases, depending on whether e2 overlaps

some chord in F ′.

Case 1: e2 overlaps no chord in F ′. Here e2, like e3 , . . . , eα, can be used to reduce cycle

lengths by l−1. Since |F ′| ≥ (l+3)/2, the long cycle lengths include n, n−2, . . . , n− (l−1);

there are (l + 1)/2 of them. Hence shifting the values down by l − 1 leaves no gaps. After

using each of e2 , . . . , eα to reduce the lengths by l − 1, we obtain 1 + α(l − 1)/2 consecutive

lengths of the same parity. Omitting the smallest, we have 1
2
α(l − 1) cycle lengths, each at

least n − α(l − 1) + 2.

If α ≥ q/l, then 1
2
α(l − 1) ≥ 1

2
q(1 − 1

l
) ≥ 1

2
(q − |F ∗| − q

l
). If α < q/l, then we use

l ≥ |F ′| =
⌈

q−|F ∗|
α

⌉

to compute

1

2
α(l − 1) ≥ 1

2
(|F ′| − 1)α ≥ 1

2
(q − |F ∗| − α) >

1

2

(

q − |F ∗| − q

l

)

.

Length n − α(l − 1) + 2 may also be counted among the short cycle lengths. Adding the

(|F ∗|−1)/2 short lengths and subtracting 1 for the possible overlap yields at least the desired

number of lengths.

Case 2: e2 overlaps some chord in F ′. Since the chords in F ′ are consecutive, this case

requires that the start of e2 is just before the end of some chord e′ in F ′. Let v′ be the start

of e′. The cycle that uses these two chords, the edge they both cover, and C[z, v′] has length

n − 2(l − 1) + 2; hence it is a long cycle. We obtain ρ ≥ |F ′| unless this length already

appears among those we have generated, which requires 2 |F ′| − 4 ≥ 2(l− 1)− 2, so |F ′| ≥ l.

Since |F ′| ≤ l, equality holds.

As noted above, we have n, n− 2, . . . , n− 2(l− 2) as l− 1 distinct cycle lengths, all long.

Lowering the bottom half of them by l− 1 exactly α− 2 times yields 1
2
α(l− 1) distinct cycle

lengths. The least of them is n−α(l−1)+2. This is exactly the same situation we obtained

in Case 1, so the same computation completes the proof. 2

Theorem 6 If G is an n-vertex Hamiltonian graph with m edges, then s(G) >
√

p− 1
2
ln p−2,

where p = m − n.
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Proof. Let C be a spanning cycle in G. Let L be the set of lengths of chords of C in G,

and let t = |L|. For each l ∈ L, we obtain two lengths of cycles in G; they are l + 1 and

n − l + 1 if l < n/2 (using one chord of length l), and they are n/2 + 1 and n if l = n/2.

Hence s(G) ≥ 2t, which suffices if t ≥ 1
2

√
p. We may therefore assume that 2t <

√
p.

For l ∈ L, let ql be the number of chords of length l. By Theorem 5, when l < n/2 there

are at least l−1
2l

ql − 3
2

lengths of cycles using only edges of C and chords of length l. The

lower bound also holds when l = n/2, since then the chords are pairwise overlapping and

Lemma 3 applies, and always q − 1 > l−1
2l

ql − 3
2
.

We may assume that l−1
2l

ql− 3
2
≤ √

p− 1
2
ln p−2 for odd l ∈ L, and 1

2
ql− 3

2
≤ √

p− 1
2
ln p−2

for even l ∈ L. Thus ql ≤ (
√

p − 1
2
ln p − 1

2
)cl, where cl = 2 when l is even and cl = 2 + 2

l−1

when l is odd. We obtain a contradiction by showing that these bounds on ql sum to less

than p. In light of the form of cl, it suffices to prove this when all values in L are odd. The

bound is now the worst when L consists of the first t positive odd numbers. We compute

p =
∑

l∈L

ql ≤
∑

l∈L

(√
p − 1

2
ln p − 1

2

)

(

2 +
2

l − 1

)

≤
(√

p − 1
2
ln p − 1

2

)

[

2t +
t

∑

i=1

1

i

]

<
(√

p − 1
2
ln p − 1

2

)

[
√

p + (1 + ln t)] <
(√

p − 1
2
ln p − 1

2

)

[
√

p + 1
2
ln p + (1 − ln 2)]

= p − 1
4
(ln p)2 − (ln2 − 1

2
)
√

p − 1
4
(3 − ln 4) ln p − 1

2
(1 − ln 2) < p.

The contradiction completes the proof. 2
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