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Cycle spectrum

» The cycle spectrum of a graph G is the set of lengths of
cycles in G.

» Let S(G) denote the cycle spectrum of G.
> Let s(G) denote |S(G)|.

Example (Jacobson—Lehel)

Rk R KRR

\/

» S(G)={4,6}U{3n,2n+2,3n+4,...,n}

» s(G)=n/6+3

» Generalizes to provide k-regular Hamiltonian graphs with
s(G) = 52n + k when 2k divides n.
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Definition
Let f,(m) be the minimum size of the cycle spectrum of an
n-vertex Hamiltonian graph with m edges.

Theorem (Bondy (1971))

If G is an n-vertex Hamiltonian graph with m edges and m > n?/4,
then G is pancyclic (has cycles of all lengths from 3 to n).

Theorem (Entringer—Schmeichel (1988))

If G is an n-vertex bipartite Hamiltonian graph with m edges and
m > n?/8, then G is bipancyclic (has cycles of all even lengths
from 4 to n).
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Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length £.
Then G contains x, y-paths of h — 1 distinct lengths. Having only
h — 1 lengths requires that

1. the chords are consecutive along P, and
2. lis odd and h > (¢ + 3)/2.

Proof.

» Lengths of paths: n,n—2,...,n—2(h—2).
» Path with a single chord: length n — (¢ — 1).
> Sol—1€{0,2,...,2(h—2)}.
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Greedy chord system

» G: Hamiltonian cycle C plus g chords of length ¢

» Find many distinct cycle lengths using a greedy chord system.

— 0 » Let F* be the set of
remaining chords.

» When F* £ &, define e*
to be the first chord in F*
after e,.

» F,...,F, and F* form a
partition of the chords.

» Greedy choice of e;:
|Fi] > |Fjl for 1 < j < a.
» Also: |F1| > |F*|.
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» We find many cycle lengths by dividing the space of possible
cycle lengths into bands.

» Let C[x,y] denote the subpath of C from x to y along the
forward direction.

» Let uv be a chord such that C[u, v] has length ¢. Replacing

Clu, v] with uv reduces the length of a cycle containing
Clu,v] by £ —1.

» We have a bands at the top, each of size ¢/ — 1.
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3 0 — 1 n

» The jth band: from n—j({ —1)+1ton—(j —1)(¢—1).
» The short cycles: lengths below the top « bands.
> The long cycles: lengths in the top 2 bands.
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» Otherwise p = |F| — 1.

u % » The Overlapping cycles lemma
implies:
/ 1. £ is odd
’/ 2. Chords in F; are consecutive
| |e3 3. A >(+3)/2
! I » We exploit the structure in two
A / cases to show

s(G) > (q—l—%) /2.
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