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Theorem (Bondy (1971))

If d(u) + d(v) ≥ n whenever u and v are non-adjacent, then
G = Kn/2,n/2 or S(G ) = {3, . . . , n}.

Theorem (Gould–Haxell–Scott (2002))

∀ε > 0 ∃c: if G is a graph with δ(G ) ≥ εn and maximum even
cycle length 2`, then S(G ) contains all even lengths up to 2`− c.

Conjecture

∃c : if G is a Hamiltonian subgraph of Kn,n with δ(G ) ≥ c
√
n, then

S(G ) = {4, 6, . . . , 2n}.
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If G has girth g and average degree k, then s(G ) ≥ Ω(kb(g−1)/2c).

I (Erdős–Faudree–Rousseau–Schelp 1999) True for g = 5.

I (Sudakov–Verstraëte 2008) True for all g .

Question (Jacobson–Lehel)

I Lower bounds on s(G ) when G is Hamiltonian and k-regular.

I In particular, what about k = 3?
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If G has girth g and average degree k, then s(G ) ≥ Ω(kb(g−1)/2c).
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I (Sudakov–Verstraëte 2008) True for all g .

Question (Jacobson–Lehel)

I Lower bounds on s(G ) when G is Hamiltonian and k-regular.

I In particular, what about k = 3?



Cycle spectrum
I The cycle spectrum of a graph G is the set of lengths of

cycles in G .

I Let S(G ) denote the cycle spectrum of G .

I Let s(G ) denote |S(G )|.

Example (Jacobson–Lehel)

I S(G ) = {4, 6} ∪
{
2
3n,

2
3n + 2, 23n + 4, . . . , n
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I Generalizes to provide k-regular Hamiltonian graphs with
s(G ) = k−2

2k n + k when 2k divides n.
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How small can the cycle spectrum be?

Definition
Let fn(m) be the minimum size of the cycle spectrum of an
n-vertex Hamiltonian graph with m edges.

Theorem (Bondy (1971))

If G is an n-vertex Hamiltonian graph with m edges and m > n2/4,
then G is pancyclic (has cycles of all lengths from 3 to n).

Theorem (Entringer–Schmeichel (1988))

If G is an n-vertex bipartite Hamiltonian graph with m edges and
m > n2/8, then G is bipancyclic (has cycles of all even lengths
from 4 to n).
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G: an x , y-path P plus h pairwise-overlapping chords of length `.
Then G contains x , y-paths of h − 1 distinct lengths. Having only
h − 1 lengths requires that

1. the chords are consecutive along P, and

2. ` is odd and h ≥ (`+ 3)/2.
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Short Cycles Long Cycles

I We find many cycle lengths by dividing the space of possible
cycle lengths into bands.

I Let C [x , y ] denote the subpath of C from x to y along the
forward direction.

I Let uv be a chord such that C [u, v ] has length `. Replacing
C [u, v ] with uv reduces the length of a cycle containing
C [u, v ] by `− 1.

I We have α bands at the top, each of size `− 1.
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I The short cycles: lengths below the top α bands.

I The long cycles: lengths in the top 2 bands.
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I We may assume |F ?| ≥ 2.

I Consider a chord e ∈ F ?

with e 6= e?.

I Cycle using e? and e has
length 2(k − j + 1).

I Cycle using e and e1 has
length 2(n − k + 2).

I Some cycle has length at
most n − j + 3.

I Note: j ≥ 1 + α`.

I This cycle has length at
most n − α`+ 2.

I α ≥ 2: this cycle is short.
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I A long cycle is good if it
contains C [u, v ].

I Let ρ be the number of lengths
of good cycles.

I Overlapping chords lemma:
ρ ≥ |F1| − 1.

I First, suppose ρ ≥ |F1|.
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I Using a chord shifts these
lengths down by `− 1.

I This yields α− 1 sets of ρ
lengths. Each length occurs at
most twice.

I Add one more set.

I Now: α sets of ρ lengths; each
length appears at most once.
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I Otherwise ρ = |F1| − 1.

I The Overlapping cycles lemma
implies:

1. ` is odd
2. Chords in F1 are consecutive
3. |F1| ≥ (`+ 3)/2

I We exploit the structure in two
cases to show

s(G ) ≥
(
q − 1− q

`

)
/2.
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Summary and Open Problems

Theorem
If G is an n-vertex Hamiltonian graph with p chords, then
s(G ) ≥ √p − 1

2 ln p − 1.

Open Problems

I What is the maximum number of edges in an n-vertex
bipartite Hamiltonian graph that is not bipancyclic? The
answer lies between (1 + o(1)) n

2

16 and (1 + o(1))n
2

8 .

I What is the maximum number of edges in an n-vertex
Hamiltonian graph with s(G ) < n/2− 1? The answer lies

between (1 + o(1)) n
2

16 and (1 + o(1))n
2

4 .

I Obtain better bounds on fn(m).

I Is a constant c such that s(G ) ≥ cn for every Hamiltonian
graph G with δ(G ) ≥ 3?

Thank You
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