Cycle Spectra of Hamiltonian Graphs

Kevin G. Milans (milans@math.sc.edu) University of South Carolina Joint with F. Pfender, D. Rautenbach, F. Regen, and D. B. West

Fall 2011 Southeastern Section Meeting of the AMS Wake Forest University Winston-Salem, NC 25 September 2011

► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.
- Let s(G) denote |S(G)|.

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.
- Let s(G) denote |S(G)|.

Theorem (Bondy (1971))

If $d(u) + d(v) \ge n$ whenever u and v are non-adjacent, then $G = K_{n/2,n/2}$ or $S(G) = \{3, \ldots, n\}.$

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.
- Let s(G) denote |S(G)|.

Theorem (Bondy (1971))

If $d(u) + d(v) \ge n$ whenever u and v are non-adjacent, then $G = K_{n/2,n/2}$ or $S(G) = \{3, \ldots, n\}.$

Theorem (Gould-Haxell-Scott (2002))

 $\forall \varepsilon > 0 \exists c: if G \text{ is a graph with } \delta(G) \geq \varepsilon n \text{ and maximum even}$ cycle length 2ℓ , then S(G) contains all even lengths up to $2\ell - c$.

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.
- Let s(G) denote |S(G)|.

Theorem (Bondy (1971))

If $d(u) + d(v) \ge n$ whenever u and v are non-adjacent, then $G = K_{n/2,n/2}$ or $S(G) = \{3, ..., n\}.$

Theorem (Gould-Haxell-Scott (2002))

 $\forall \varepsilon > 0 \exists c: if G \text{ is a graph with } \delta(G) \geq \varepsilon n \text{ and maximum even}$ cycle length 2ℓ , then S(G) contains all even lengths up to $2\ell - c$.

Conjecture

 $\exists c$: if G is a Hamiltonian subgraph of $K_{n,n}$ with $\delta(G) \ge c\sqrt{n}$, then $S(G) = \{4, 6, \dots, 2n\}.$

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.
- Let s(G) denote |S(G)|.

Conjecture (Erdős)

If G has girth g and average degree k, then $s(G) \ge \Omega(k^{\lfloor (g-1)/2 \rfloor})$.

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.
- Let s(G) denote |S(G)|.

Conjecture (Erdős)

If G has girth g and average degree k, then $s(G) \ge \Omega(k^{\lfloor (g-1)/2 \rfloor})$.

• (Erdős–Faudree–Rousseau–Schelp 1999) True for g = 5.

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.
- Let s(G) denote |S(G)|.

Conjecture (Erdős)

If G has girth g and average degree k, then $s(G) \ge \Omega(k^{\lfloor (g-1)/2 \rfloor})$.

- (Erdős–Faudree–Rousseau–Schelp 1999) True for g = 5.
- ▶ (Sudakov–Verstraëte 2008) True for all g.

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.
- Let s(G) denote |S(G)|.

Conjecture (Erdős)

If G has girth g and average degree k, then $s(G) \ge \Omega(k^{\lfloor (g-1)/2 \rfloor})$.

- (Erdős–Faudree–Rousseau–Schelp 1999) True for g = 5.
- ▶ (Sudakov–Verstraëte 2008) True for all g.

Question (Jacobson-Lehel)

• Lower bounds on s(G) when G is Hamiltonian and k-regular.

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.
- Let s(G) denote |S(G)|.

Conjecture (Erdős)

If G has girth g and average degree k, then $s(G) \ge \Omega(k^{\lfloor (g-1)/2 \rfloor})$.

- (Erdős–Faudree–Rousseau–Schelp 1999) True for g = 5.
- ▶ (Sudakov–Verstraëte 2008) True for all g.

Question (Jacobson-Lehel)

- Lower bounds on s(G) when G is Hamiltonian and k-regular.
- In particular, what about k = 3?

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.
- Let s(G) denote |S(G)|.

Example (Jacobson-Lehel)

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.
- Let s(G) denote |S(G)|.

Example (Jacobson-Lehel)

• $S(G) = \{4, 6\} \cup \{\frac{2}{3}n, \frac{2}{3}n+2, \frac{2}{3}n+4, \dots, n\}$

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.
- Let s(G) denote |S(G)|.

Example (Jacobson-Lehel)

• $S(G) = \{4, 6\} \cup \{\frac{2}{3}n, \frac{2}{3}n+2, \frac{2}{3}n+4, \dots, n\}$ • s(G) = n/6 + 3

- ► The cycle spectrum of a graph *G* is the set of lengths of cycles in *G*.
- Let S(G) denote the cycle spectrum of G.
- Let s(G) denote |S(G)|.

Example (Jacobson-Lehel)

- ► $S(G) = \{4, 6\} \cup \{\frac{2}{3}n, \frac{2}{3}n+2, \frac{2}{3}n+4, \dots, n\}$
- s(G) = n/6 + 3
- Generalizes to provide k-regular Hamiltonian graphs with $s(G) = \frac{k-2}{2k}n + k$ when 2k divides n.

How small can the cycle spectrum be?

Definition

Let $f_n(m)$ be the minimum size of the cycle spectrum of an *n*-vertex Hamiltonian graph with *m* edges.

How small can the cycle spectrum be?

Definition

Let $f_n(m)$ be the minimum size of the cycle spectrum of an *n*-vertex Hamiltonian graph with *m* edges.

Theorem (Bondy (1971))

If G is an n-vertex Hamiltonian graph with m edges and $m > n^2/4$, then G is pancyclic (has cycles of all lengths from 3 to n).

How small can the cycle spectrum be?

Definition

Let $f_n(m)$ be the minimum size of the cycle spectrum of an *n*-vertex Hamiltonian graph with *m* edges.

Theorem (Bondy (1971))

If G is an n-vertex Hamiltonian graph with m edges and $m > n^2/4$, then G is pancyclic (has cycles of all lengths from 3 to n).

Theorem (Entringer–Schmeichel (1988))

If G is an n-vertex bipartite Hamiltonian graph with m edges and $m > n^2/8$, then G is bipancyclic (has cycles of all even lengths from 4 to n).

Lemma

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h - 1 distinct lengths. Having only h - 1 lengths requires that

1. the chords are consecutive along P, and

Lemma

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h-1 distinct lengths. Having only h-1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

Proof.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h-1 distinct lengths. Having only h-1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

Proof.

• Let *n* be the length of *P*.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h - 1 distinct lengths. Having only h - 1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

Proof.

- Let *n* be the length of *P*.
- Let e_1, \ldots, e_h be the chords in G.

Lemma

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- Let *n* be the length of *P*.
- Let e_1, \ldots, e_h be the chords in G.
- Let $P_{i,j}$ be the x, y-path using e_i , e_j , and edges of P.

Lemma

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- Let *n* be the length of *P*.
- Let e_1, \ldots, e_h be the chords in G.
- Let $P_{i,j}$ be the x, y-path using e_i , e_j , and edges of P.
- The length of $P_{i,j}$ is $n+2-2d(e_i,e_j)$.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h-1 distinct lengths. Having only h-1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

• The length of $P_{i,j}$ is $n+2-2d(e_i,e_j)$.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h-1 distinct lengths. Having only h-1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

Proof.

- The length of $P_{i,j}$ is $n+2-2d(e_i,e_j)$.
- Already, $P_{1,2}, \ldots, P_{1,h}$ provide h-1 lengths.

Lemma

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- The length of $P_{i,j}$ is $n+2-2d(e_i,e_j)$.
- Already, $P_{1,2}, \ldots, P_{1,h}$ provide h-1 lengths.

Lemma

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- The length of $P_{i,j}$ is $n+2-2d(e_i,e_j)$.
- Already, $P_{1,2}, \ldots, P_{1,h}$ provide h-1 lengths.

Lemma

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- The length of $P_{i,j}$ is $n+2-2d(e_i,e_j)$.
- Already, $P_{1,2}, \ldots, P_{1,h}$ provide h-1 lengths.

Lemma

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- The length of $P_{i,j}$ is $n+2-2d(e_i,e_j)$.
- Already, $P_{1,2}, \ldots, P_{1,h}$ provide h-1 lengths.

Lemma

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- The length of $P_{i,j}$ is $n+2-2d(e_i,e_j)$.
- Already, $P_{1,2}, \ldots, P_{1,h}$ provide h-1 lengths.
- Only h-1 lengths: every length is realized by $P_{1,j}$ for some j.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h-1 distinct lengths. Having only h-1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

Proof.

- The length of $P_{i,j}$ is $n+2-2d(e_i,e_j)$.
- Already, $P_{1,2}, \ldots, P_{1,h}$ provide h-1 lengths.
- Only h-1 lengths: every length is realized by $P_{1,j}$ for some j.
- Length *n* is realized: e_2 immediately follows e_1 .

Lemma

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- The length of $P_{i,j}$ is $n+2-2d(e_i,e_j)$.
- Already, $P_{1,2}, \ldots, P_{1,h}$ provide h-1 lengths.
- Only h-1 lengths: every length is realized by $P_{1,j}$ for some j.
- Length *n* is realized: e_2 immediately follows e_1 .
Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h-1 distinct lengths. Having only h-1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

Consider a chord e_j.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h - 1 distinct lengths. Having only h - 1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- Consider a chord e_j.
- The length of $P_{2,j}$...

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h - 1 distinct lengths. Having only h - 1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- Consider a chord e_j.
- The length of $P_{2,j}$...

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h-1 distinct lengths. Having only h-1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- Consider a chord e_j.
- ▶ The length of P_{2,j} ...
- ... is also realized by $P_{1,i}$.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h-1 distinct lengths. Having only h-1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- Consider a chord e_j.
- ▶ The length of P_{2,j} ...
- ... is also realized by $P_{1,i}$.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h-1 distinct lengths. Having only h-1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

Proof.

- Consider a chord e_j.
- ▶ The length of P_{2,j} ...
- ... is also realized by $P_{1,i}$.
- ► So, there is a chord immediately preceding *e_j*.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h-1 distinct lengths. Having only h-1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- ▶ Consider a chord *e_j*.
- ▶ The length of P_{2,j} ...
- ... is also realized by $P_{1,i}$.
- ► So, there is a chord immediately preceding *e_j*.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h-1 distinct lengths. Having only h-1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- ▶ Consider a chord *e_j*.
- ▶ The length of P_{2,j} ...
- ... is also realized by $P_{1,i}$.
- ► So, there is a chord immediately preceding *e_j*.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h-1 distinct lengths. Having only h-1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

• Lengths of paths: $n, n-2, \ldots, n-2(h-2)$.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h-1 distinct lengths. Having only h-1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- Lengths of paths: $n, n-2, \ldots, n-2(h-2)$.
- Path with a single chord: length $n (\ell 1)$.

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ . Then G contains x, y-paths of h - 1 distinct lengths. Having only h - 1 lengths requires that

- 1. the chords are consecutive along P, and
- 2. ℓ is odd and $h \ge (\ell + 3)/2$.

- Lengths of paths: $n, n-2, \ldots, n-2(h-2)$.
- Path with a single chord: length $n (\ell 1)$.

• So
$$\ell - 1 \in \{0, 2, \dots, 2(h - 2)\}.$$

• G: Hamiltonian cycle C plus q chords of length ℓ

- G: Hamiltonian cycle C plus q chords of length ℓ
- ► Find many distinct cycle lengths using a greedy chord system.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Choose a forward direction along C.
- e1: chord with most overlapping chords going forward.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Choose a forward direction along C.
- e1: chord with most overlapping chords going forward.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Choose a forward direction along C.
- e1: chord with most overlapping chords going forward.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Choose a forward direction along C.
- e1: chord with most overlapping chords going forward.
- e₂: first chord not overlapping e₁.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Choose a forward direction along C.
- e1: chord with most overlapping chords going forward.
- e₂: first chord not overlapping e₁.
- e₃: first chord not overlapping e₂ or e₁.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Choose a forward direction along C.
- e₁: chord with most overlapping chords going forward.
- e₂: first chord not overlapping e₁.
- e3: first chord not overlapping e2 or e1.
- e₄: first chord not overlapping e₃ or e₁.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

 The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e₁.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e₁.
- For 1 ≤ j ≤ α, let F_j consist of e_j plus chords overlapping e_j going forward.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e₁.
- For 1 ≤ j ≤ α, let F_j consist of e_j plus chords overlapping e_j going forward.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e₁.
- For 1 ≤ j ≤ α, let F_j consist of e_j plus chords overlapping e_j going forward.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e₁.
- For 1 ≤ j ≤ α, let F_j consist of e_j plus chords overlapping e_j going forward.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e₁.
- For 1 ≤ j ≤ α, let F_j consist of e_j plus chords overlapping e_j going forward.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e₁.
- For 1 ≤ j ≤ α, let F_j consist of e_j plus chords overlapping e_j going forward.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Let F^{*} be the set of remaining chords.
- When F[★] ≠ Ø, define e^{*} to be the first chord in F^{*} after e_α.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Let F* be the set of remaining chords.
- When F^{*} ≠ Ø, define e^{*} to be the first chord in F^{*} after e_α.
- *F*₁,...,*F*_α and *F*^{*} form a partition of the chords.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Let F^{*} be the set of remaining chords.
- When F[★] ≠ Ø, define e^{*} to be the first chord in F^{*} after e_α.
- *F*₁,...,*F*_α and *F*^{*} form a partition of the chords.
- Greedy choice of e_1 : $|F_1| \ge |F_j|$ for $1 \le j \le \alpha$.

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Let F^{*} be the set of remaining chords.
- When F[★] ≠ Ø, define e^{*} to be the first chord in F^{*} after e_α.
- *F*₁,...,*F*_α and *F*^{*} form a partition of the chords.
- Greedy choice of e_1 : $|F_1| \ge |F_i|$ for $1 \le j \le \alpha$.
- Also: $|F_1| \ge |F^\star|$.

Spectrum bands

 We find many cycle lengths by dividing the space of possible cycle lengths into bands.

Spectrum bands

- We find many cycle lengths by dividing the space of possible cycle lengths into bands.
- ► Let C[x, y] denote the subpath of C from x to y along the forward direction.

Spectrum bands

- We find many cycle lengths by dividing the space of possible cycle lengths into bands.
- ► Let C[x, y] denote the subpath of C from x to y along the forward direction.
- Let uv be a chord such that C[u, v] has length ℓ . Replacing C[u, v] with uv reduces the length of a cycle containing C[u, v] by $\ell 1$.

- We find many cycle lengths by dividing the space of possible cycle lengths into bands.
- ► Let C[x, y] denote the subpath of C from x to y along the forward direction.
- Let uv be a chord such that C[u, v] has length ℓ . Replacing C[u, v] with uv reduces the length of a cycle containing C[u, v] by $\ell 1$.
- We have α bands at the top, each of size $\ell 1$.

• The *j*th band: from $n - j(\ell - 1) + 1$ to $n - (j - 1)(\ell - 1)$.

- The *j*th band: from $n j(\ell 1) + 1$ to $n (j 1)(\ell 1)$.
- The short cycles: lengths below the top α bands.

- ▶ The *j*th band: from $n j(\ell 1) + 1$ to $n (j 1)(\ell 1)$.
- The short cycles: lengths below the top α bands.
- The long cycles: lengths in the top 2 bands.

Lemma

Lemma

Lemma

Lemma

If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*|-1}{2}$ distinct lengths.

• We may assume $|F^*| \ge 2$.

Lemma

- We may assume $|F^*| \ge 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.

Lemma

- We may assume $|F^*| \ge 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- ► Cycle using e^{*} and e has length 2(k j + 1).

Lemma

- We may assume $|F^{\star}| \geq 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- ► Cycle using e^{*} and e has length 2(k - j + 1).
- Cycle using e and e_1 has length 2(n k + 2).

Lemma

- We may assume $|F^{\star}| \geq 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- ► Cycle using e^{*} and e has length 2(k j + 1).
- Cycle using e and e_1 has length 2(n k + 2).
- Some cycle has length at most n − j + 3.

Lemma

- We may assume $|F^*| \ge 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- ► Cycle using e^{*} and e has length 2(k - j + 1).
- Cycle using e and e_1 has length 2(n k + 2).
- Some cycle has length at most n−j+3.

Lemma

- We may assume $|F^{\star}| \geq 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- ► Cycle using e^{*} and e has length 2(k - j + 1).
- Cycle using e and e_1 has length 2(n k + 2).
- Some cycle has length at most n − j + 3.
- Note: $j \ge 1 + \alpha \ell$.

Lemma

- We may assume $|F^{\star}| \geq 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- ► Cycle using e^{*} and e has length 2(k - j + 1).
- Cycle using e and e_1 has length 2(n k + 2).
- Some cycle has length at most n−j+3.
- Note: $j \ge 1 + \alpha \ell$.
- This cycle has length at most n − αℓ + 2.

Lemma

- We may assume $|F^{\star}| \geq 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- ► Cycle using e^{*} and e has length 2(k j + 1).
- Cycle using e and e_1 has length 2(n k + 2).
- Some cycle has length at most n−j+3.
- Note: $j \ge 1 + \alpha \ell$.
- This cycle has length at most $n \alpha \ell + 2$.
- $\alpha \ge 2$: this cycle is short.

Lemma

Lemma

- ► We obtain |F* 1| short cycles.
- Each length occurs at most twice.

Longer cycles

 A long cycle is good if it contains C[u, v].

 A long cycle is good if it contains C[u, v].

- A long cycle is good if it contains C[u, v].
- Let ρ be the number of lengths of good cycles.

- A long cycle is good if it contains C[u, v].
- Let ρ be the number of lengths of good cycles.

- A long cycle is good if it contains C[u, v].
- Let ρ be the number of lengths of good cycles.
- Overlapping chords lemma: $\rho \ge |F_1| - 1.$

- A long cycle is good if it contains C[u, v].
- Let ρ be the number of lengths of good cycles.
- Overlapping chords lemma: $\rho \ge |F_1| 1.$
- First, suppose $\rho \geq |F_1|$.

- A long cycle is good if it contains C[u, v].
- Let ρ be the number of lengths of good cycles.
- Overlapping chords lemma: $\rho \ge |F_1| 1.$
- First, suppose $\rho \geq |F_1|$.

► Using a chord shifts these lengths down by ℓ − 1.

► Using a chord shifts these lengths down by ℓ − 1.

► Using a chord shifts these lengths down by ℓ − 1.

► Using a chord shifts these lengths down by ℓ − 1.

- ► Using a chord shifts these lengths down by ℓ − 1.
- This yields α 1 sets of ρ lengths. Each length occurs at most twice.

- ► Using a chord shifts these lengths down by ℓ − 1.
- This yields α 1 sets of ρ lengths. Each length occurs at most twice.
- Add one more set.

- ► Using a chord shifts these lengths down by ℓ − 1.
- This yields α 1 sets of ρ lengths. Each length occurs at most twice.
- Add one more set.
- Now: α sets of ρ lengths; each length appears at most once.

► So we have $\frac{\alpha\rho}{2}$ longer cycle lengths, plus $\frac{|F^{\star}|-1}{2}$ short cycle lengths.

So we have αρ/2 longer cycle lengths, plus |F^{*}|−1/2 short cycle lengths.

Since
$$\rho \ge |F_1|$$
,

$$s(G) \ge \frac{\alpha}{2}|F_1| + \frac{|F^*| - 1}{2}$$
$$\ge \frac{\alpha}{2}\frac{q - |F^*|}{\alpha} + \frac{|F^*| - 1}{2}$$
$$\ge \frac{q - 1}{2}$$

• Otherwise $\rho = |F_1| - 1$.

- Otherwise $\rho = |F_1| 1$.
- The Overlapping cycles lemma implies:

- Otherwise $\rho = |F_1| 1$.
- The Overlapping cycles lemma implies:
 - 1. ℓ is odd
 - 2. Chords in F_1 are consecutive
 - 3. $|F_1| \ge (\ell + 3)/2$

- Otherwise $\rho = |F_1| 1$.
- The Overlapping cycles lemma implies:
 - 1. ℓ is odd
 - 2. Chords in F_1 are consecutive
 - 3. $|F_1| \ge (\ell + 3)/2$
- We exploit the structure in two cases to show

$$s(G) \geq \left(q-1-rac{q}{\ell}\right)/2.$$

Theorem

If G is an n-vertex Hamiltonian graph with p chords, then $s(G) \ge \sqrt{p} - \frac{1}{2} \ln p - 1.$

Theorem If G is an n-vertex Hamiltonian graph with p chords, then $s(G) \ge \sqrt{p} - \frac{1}{2} \ln p - 1.$

Open Problems

▶ What is the maximum number of edges in an *n*-vertex bipartite Hamiltonian graph that is not bipancyclic? The answer lies between $(1 + o(1))\frac{n^2}{16}$ and $(1 + o(1))\frac{n^2}{8}$.

Theorem If G is an n-vertex Hamiltonian graph with p chords, then $s(G) \ge \sqrt{p} - \frac{1}{2} \ln p - 1.$

Open Problems

- What is the maximum number of edges in an *n*-vertex bipartite Hamiltonian graph that is not bipancyclic? The answer lies between (1 + o(1))^{n²}/₁₆ and (1 + o(1))^{n²}/₈.
- What is the maximum number of edges in an *n*-vertex Hamiltonian graph with s(G) < n/2 − 1? The answer lies between (1 + o(1))^{n²}/₁₆ and (1 + o(1))^{n²}/₄.

Theorem If G is an n-vertex Hamiltonian graph with p chords, then $s(G) \ge \sqrt{p} - \frac{1}{2} \ln p - 1.$

Open Problems

- What is the maximum number of edges in an *n*-vertex bipartite Hamiltonian graph that is not bipancyclic? The answer lies between (1 + o(1))^{n²}/₁₆ and (1 + o(1))^{n²}/₈.
- What is the maximum number of edges in an *n*-vertex Hamiltonian graph with s(G) < n/2 − 1? The answer lies between (1 + o(1))^{n²}/₁₆ and (1 + o(1))^{n²}/₄.
- Obtain better bounds on $f_n(m)$.

Theorem If G is an n-vertex Hamiltonian graph with p chords, then $s(G) \ge \sqrt{p} - \frac{1}{2} \ln p - 1.$

Open Problems

- What is the maximum number of edges in an *n*-vertex bipartite Hamiltonian graph that is not bipancyclic? The answer lies between (1 + o(1))^{n²}/₁₆ and (1 + o(1))^{n²}/₈.
- ▶ What is the maximum number of edges in an *n*-vertex Hamiltonian graph with s(G) < n/2 1? The answer lies between $(1 + o(1))\frac{n^2}{16}$ and $(1 + o(1))\frac{n^2}{4}$.
- Obtain better bounds on $f_n(m)$.
- Is a constant c such that s(G) ≥ cn for every Hamiltonian graph G with δ(G) ≥ 3?

Theorem If G is an n-vertex Hamiltonian graph with p chords, then $s(G) \ge \sqrt{p} - \frac{1}{2} \ln p - 1.$

Open Problems

- What is the maximum number of edges in an *n*-vertex bipartite Hamiltonian graph that is not bipancyclic? The answer lies between (1 + o(1))^{n²}/₁₆ and (1 + o(1))^{n²}/₈.
- ▶ What is the maximum number of edges in an *n*-vertex Hamiltonian graph with s(G) < n/2 1? The answer lies between $(1 + o(1))\frac{n^2}{16}$ and $(1 + o(1))\frac{n^2}{4}$.
- Obtain better bounds on $f_n(m)$.
- Is a constant c such that s(G) ≥ cn for every Hamiltonian graph G with δ(G) ≥ 3?

Thank You