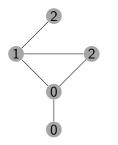
## Computational Complexity Aspects of Graph Pebbling

#### Kevin G. Milans (milans@math.illinois.edu) Joint with Bryan Clark

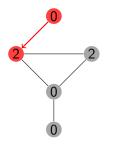
University of Illinois at Urbana-Champaign

CanaDAM 2009 Montréal, Québec 26 May 2009



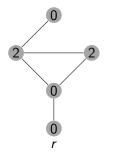
 A *pebbling move* removes two pebbles from a vertex and places one on a neighbor

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

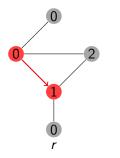


 A *pebbling move* removes two pebbles from a vertex and places one on a neighbor

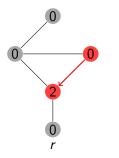
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで



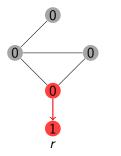
- A pebbling move removes two pebbles from a vertex and places one on a neighbor
- REACHABILITY: Given a graph G with pebbles and a target r, can we put a pebble on r?



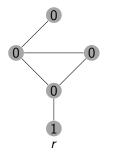
- A *pebbling move* removes two pebbles from a vertex and places one on a neighbor
- REACHABILITY: Given a graph G with pebbles and a target r, can we put a pebble on r?



- A *pebbling move* removes two pebbles from a vertex and places one on a neighbor
- REACHABILITY: Given a graph G with pebbles and a target r, can we put a pebble on r?

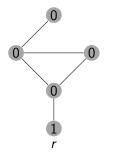


- A *pebbling move* removes two pebbles from a vertex and places one on a neighbor
- REACHABILITY: Given a graph G with pebbles and a target r, can we put a pebble on r?

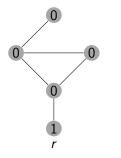


- A *pebbling move* removes two pebbles from a vertex and places one on a neighbor
- REACHABILITY: Given a graph G with pebbles and a target r, can we put a pebble on r?

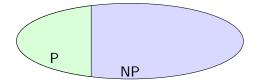
▶ In this example: yes



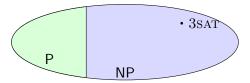
- A *pebbling move* removes two pebbles from a vertex and places one on a neighbor
- REACHABILITY: Given a graph G with pebbles and a target r, can we put a pebble on r?
- In this example: yes
- Are there fast algorithms for this problem?



- A *pebbling move* removes two pebbles from a vertex and places one on a neighbor
- REACHABILITY: Given a graph G with pebbles and a target r, can we put a pebble on r?
- In this example: yes
- Are there fast algorithms for this problem?
- Probably not: many problems are special cases of REACHABILITY

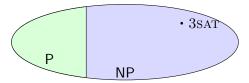






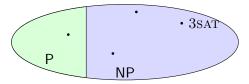
► Early 1970's: Stephen Cook and Leonid Levin independently made a remarkable discovery about a problem "3SAT":

イロト 不得 トイヨト イヨト

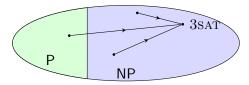


- ► Early 1970's: Stephen Cook and Leonid Levin independently made a remarkable discovery about a problem "3SAT":
- ▶ For each problem *L* in NP, it is possible to quickly convert instances of *L* to instances of 3sAT.

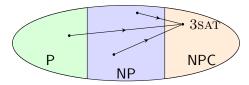
- 日本 - 4 日本 - 4 日本 - 日本



- ► Early 1970's: Stephen Cook and Leonid Levin independently made a remarkable discovery about a problem "3SAT":
- ► For each problem *L* in NP, it is possible to quickly convert instances of *L* to instances of 3SAT.



- Early 1970's: Stephen Cook and Leonid Levin independently made a remarkable discovery about a problem "3SAT":
- ► For each problem *L* in NP, it is possible to quickly convert instances of *L* to instances of 3SAT.
- ► The procedure that translates instances of *L* to instances of 3SAT is called a *reduction*.

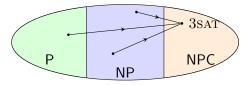


- Early 1970's: Stephen Cook and Leonid Levin independently made a remarkable discovery about a problem "3SAT":
- ► For each problem *L* in NP, it is possible to quickly convert instances of *L* to instances of 3SAT.
- ► The procedure that translates instances of *L* to instances of 3SAT is called a *reduction*.

Theorem (Cook; Levin)

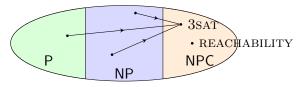
**3SAT** is NP-complete.

# $Complexity \ of \ {\rm REACHABILITY}$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

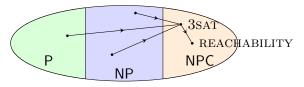
## $Complexity \ of \ {\rm REACHABILITY}$



#### Fact REACHABILITY is in NP.



## Complexity of REACHABILITY



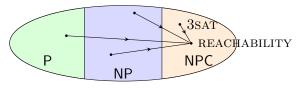
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Fact REACHABILITY is in NP.

#### Theorem

There is a polynomial time reduction from 3SAT to REACHABILITY.

## Complexity of REACHABILITY



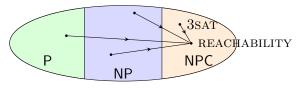
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Fact REACHABILITY is in NP.

Theorem

There is a polynomial time reduction from 3SAT to REACHABILITY.

## Complexity of REACHABILITY



#### Fact REACHABILITY is in NP.

#### Theorem

There is a polynomial time reduction from 3SAT to REACHABILITY.

Corollary (Hurlbert-Kierstead; Watson; Clark-Milans) REACHABILITY *is NP-complete. If there is a polynomial time algorithm for* REACHABILITY, *then P*=*NP*. ▶  $\land$  means "and",  $\lor$  means "or",  $\overline{x}$  means "not x"

### $3 \mathrm{SAT}$

- ▶  $\land$  means "and",  $\lor$  means "or",  $\overline{x}$  means "not x"
- ► A boolean formula in 3CNF:

$$\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$

### $3 \mathrm{SAT}$

- ▶  $\land$  means "and",  $\lor$  means "or",  $\overline{x}$  means "not x"
- A boolean formula in 3CNF:

$$\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ 3SAT: Given a 3CNF formula  $\phi$ , is  $\phi$  satisfiable?

### 3 SAT

- ▶  $\land$  means "and",  $\lor$  means "or",  $\overline{x}$  means "not x"
- A boolean formula in 3CNF:

$$\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ 3SAT: Given a 3CNF formula  $\phi$ , is  $\phi$  satisfiable?

### 3 SAT

- ▶  $\land$  means "and",  $\lor$  means "or",  $\overline{x}$  means "not x"
- A boolean formula in 3CNF:

$$\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$

▶ 3SAT: Given a 3CNF formula  $\phi$ , is  $\phi$  satisfiable?

#### Definition

- A 3CNF formula  $\phi$  is *simple* if
  - 1. each variable appears at most twice in its positive form, and

### 3sat

- ▶  $\land$  means "and",  $\lor$  means "or",  $\overline{x}$  means "not x"
- A boolean formula in 3CNF:

 $\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$ 

▶ 3SAT: Given a 3CNF formula  $\phi$ , is  $\phi$  satisfiable?

#### Definition

- A 3CNF formula  $\phi$  is *simple* if
  - 1. each variable appears at most twice in its positive form, and

2. each variable appears at most once in its negative form.

### 3sat

- ▶  $\land$  means "and",  $\lor$  means "or",  $\overline{x}$  means "not x"
- A boolean formula in 3CNF:

 $\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$ 

▶ 3SAT: Given a 3CNF formula  $\phi$ , is  $\phi$  satisfiable?

#### Definition

A 3CNF formula  $\phi$  is *simple* if

- 1. each variable appears at most twice in its positive form, and
- 2. each variable appears at most once in its negative form.

#### Proposition

There is a polynomial time algorithm to convert a 3CNF formula to an equivalent simple 3CNF formula.

### $3\mathrm{SAT}$ to reachability

3SAT

REACHABILITY

### $3\mathrm{SAT}$ to Reachability



### $3\mathrm{SAT}$ to Reachability



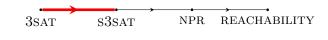
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### $3\mathrm{SAT}$ to Reachability



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### $3\mathrm{SAT}$ to reachability



► Step 1. Straightforward.



### 3SAT to REACHABILITY



- Step 1. Straightforward.
- Step 2. NPR: Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?

## $3\mathrm{SAT}$ to reachability



$$\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### 3SAT to REACHABILITY



$$\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$

And Gadget



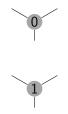
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

#### $3\mathrm{SAT}$ to reachability



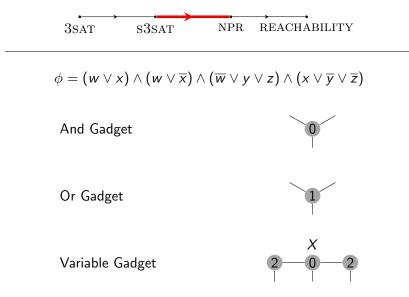
$$\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$

And Gadget

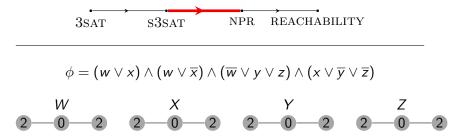


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

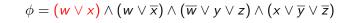
Or Gadget

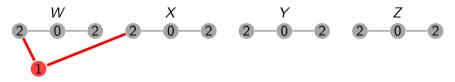


▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >



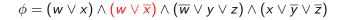


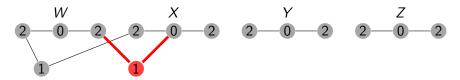




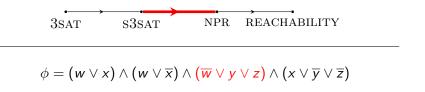
▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

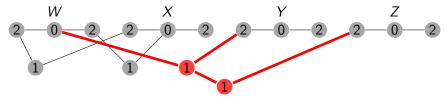






▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

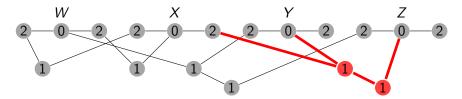




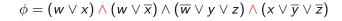
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

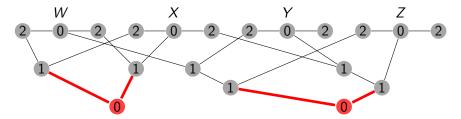


 $\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$ 





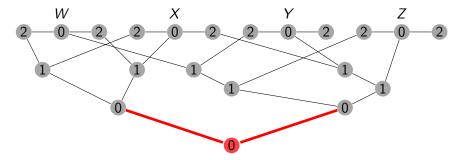




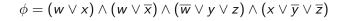
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

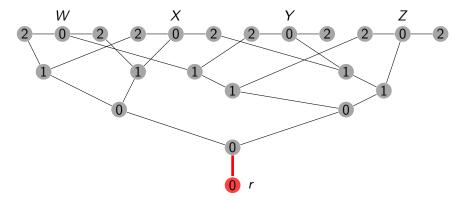




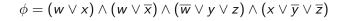


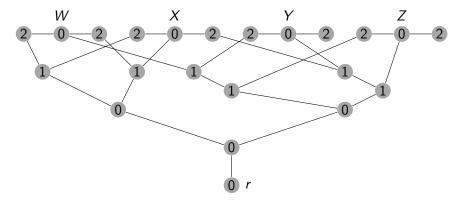






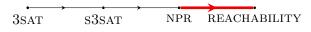






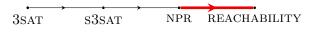


- Step 1. Straightforward.
- Step 2. NPR: Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?



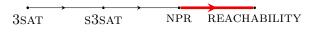
- Step 1. Straightforward.
- Step 2. NPR: Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?

▶ Step 3. Replace each edge with a "one-use" path.



- Step 1. Straightforward.
- Step 2. NPR: Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?
- ▶ Step 3. Replace each edge with a "one-use" path.





- Step 1. Straightforward.
- Step 2. NPR: Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?
- ▶ Step 3. Replace each edge with a "one-use" path.





- Step 1. Straightforward.
- Step 2. NPR: Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?
- Step 3. Replace each edge with a "one-use" path.



#### Theorem

REACHABILITY is NP-complete even for bipartite graphs with  $\Delta(G) \leq 3$  and at most 2 pebbles on each vertex.

### Pebbling Number

► A distribution of pebbles is solvable if every vertex is reachable

### Pebbling Number

A distribution of pebbles is solvable if every vertex is reachable
*π*(*G*): min *k* such that each dist. of *k* pebbles is solvable.

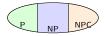
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### Pebbling Number

A distribution of pebbles is solvable if every vertex is reachable

- $\pi(G)$ : min k such that each dist. of k pebbles is solvable.
- ▶ PEBBLING-NUMBER: given G and k, is  $\pi(G) \leq k$ ?

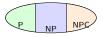




#### ▶ We usually think of NP as containing "hard problems".

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

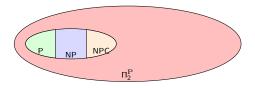




▶ We usually think of NP as containing "hard problems".

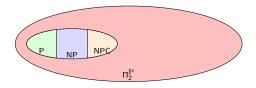
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ It's all relative: some problems make NP look easy.



▶ We usually think of NP as containing "hard problems".

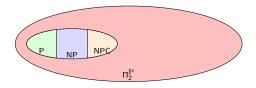
- It's all relative: some problems make NP look easy.
- $\Pi_2^{\rm P}$ : class of problems containing NP.



▶ We usually think of NP as containing "hard problems".

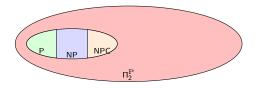
(日) (個) (E) (E) (E)

- It's all relative: some problems make NP look easy.
- $\Pi_2^{\rm P}$ : class of problems containing NP.
- Roughly: P is to NP as NP is to  $\Pi_2^{P}$ .

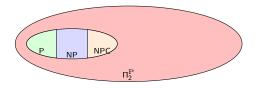


▶ We usually think of NP as containing "hard problems".

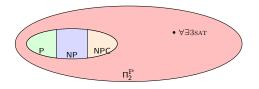
- It's all relative: some problems make NP look easy.
- $\Pi_2^{\rm P}$ : class of problems containing NP.
- Roughly: P is to NP as NP is to  $\Pi_2^{P}$ .
- How difficult can  $\Pi_2^P$  problems be?



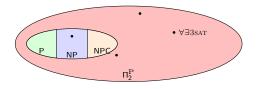
- ▶ We usually think of NP as containing "hard problems".
- It's all relative: some problems make NP look easy.
- $\Pi_2^{\rm P}$ : class of problems containing NP.
- Roughly: P is to NP as NP is to  $\Pi_2^{P}$ .
- How difficult can  $\Pi_2^P$  problems be?
- (Probably) can't solve them quickly, even if you have a magical device that solves problems in NP instantly.



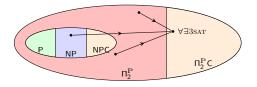
- ▶ We usually think of NP as containing "hard problems".
- It's all relative: some problems make NP look easy.
- $\Pi_2^{\rm P}$ : class of problems containing NP.
- Roughly: P is to NP as NP is to  $\Pi_2^{P}$ .
- How difficult can  $\Pi_2^P$  problems be?
- (Probably) can't solve them quickly, even if you have a magical device that solves problems in NP instantly.
- ▶ Just like P vs. NP, most believe that NP  $\subsetneq \Pi_2^P$ .



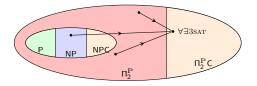
- ▶ We usually think of NP as containing "hard problems".
- It's all relative: some problems make NP look easy.
- $\Pi_2^{\rm P}$ : class of problems containing NP.
- Roughly: P is to NP as NP is to  $\Pi_2^{P}$ .
- How difficult can  $\Pi_2^P$  problems be?
- (Probably) can't solve them quickly, even if you have a magical device that solves problems in NP instantly.
- ▶ Just like P vs. NP, most believe that NP  $\subsetneq \Pi_2^P$ .
- Analogous to 3SAT in NP:  $\forall \exists 3$ SAT in  $\Pi_2^P$ .



- ▶ We usually think of NP as containing "hard problems".
- It's all relative: some problems make NP look easy.
- $\Pi_2^{\rm P}$ : class of problems containing NP.
- Roughly: P is to NP as NP is to  $\Pi_2^{P}$ .
- How difficult can  $\Pi_2^P$  problems be?
- (Probably) can't solve them quickly, even if you have a magical device that solves problems in NP instantly.
- ▶ Just like P vs. NP, most believe that NP  $\subsetneq \Pi_2^P$ .
- Analogous to 3SAT in NP:  $\forall \exists 3$ SAT in  $\Pi_2^P$ .



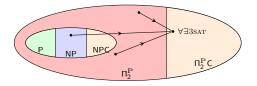
- ▶ We usually think of NP as containing "hard problems".
- It's all relative: some problems make NP look easy.
- $\Pi_2^{\rm P}$ : class of problems containing NP.
- Roughly: P is to NP as NP is to  $\Pi_2^{P}$ .
- How difficult can Π<sup>P</sup><sub>2</sub> problems be?
- (Probably) can't solve them quickly, even if you have a magical device that solves problems in NP instantly.
- ▶ Just like P vs. NP, most believe that NP  $\subsetneq \Pi_2^P$ .
- Analogous to 3SAT in NP:  $\forall \exists 3$ SAT in  $\Pi_2^P$ .



► 3SAT example:

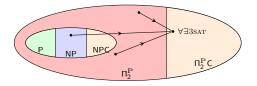
$$(w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



► 3SAT example:

 $\exists w \exists y \exists x \exists z \quad (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$ 



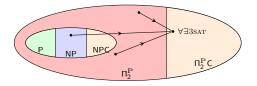
► 3SAT example:

$$\exists w \exists y \exists x \exists z \quad (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$

► ∀∃3sat example:

 $\forall w \forall y \exists x \exists z \quad (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$ 

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで



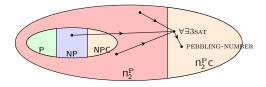
► 3SAT example:

$$\exists w \exists y \exists x \exists z \quad (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$

► ∀∃3sat example:

 $\forall w \forall y \exists x \exists z \quad (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$ 

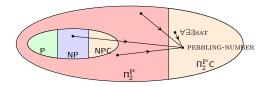
∀∃3SAT example is a "no" instance: if w is false, first two clauses are unsatisfiable.



#### Theorem

# There is a polynomial time reduction from $\forall \exists 3sat$ to PEBBLING-NUMBER.





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Theorem

There is a polynomial time reduction from  $\forall \exists 3sat$  to PEBBLING-NUMBER.

Corollary PEBBLING-NUMBER is  $\Pi_2^P$ -complete.

•  $\hat{\pi}(G)$ : min. k such that there is a solvable dist. of size k.

- $\widehat{\pi}(G)$ : min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function f : V(G) → N if there is a sequence of pebbling moves after which: ∀v at least f(v) pebbles on v.

- $\widehat{\pi}(G)$ : min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function f : V(G) → N if there is a sequence of pebbling moves after which: ∀v at least f(v) pebbles on v.
- ▶  $\gamma_f(G)$ : min. k such that every dist. of k pebbles covers f.

- $\hat{\pi}(G)$ : min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function f : V(G) → N if there is a sequence of pebbling moves after which: ∀v at least f(v) pebbles on v.
- $\gamma_f(G)$ : min. k such that every dist. of k pebbles covers f.
- $\gamma(G)$ : special case of  $\gamma_f(G)$  where f is the unit distribution.

- $\widehat{\pi}(G)$ : min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function f : V(G) → N if there is a sequence of pebbling moves after which: ∀v at least f(v) pebbles on v.
- $\gamma_f(G)$ : min. k such that every dist. of k pebbles covers f.
- $\gamma(G)$ : special case of  $\gamma_f(G)$  where f is the unit distribution.

| Parameter               | Question                       | Complexity                     |
|-------------------------|--------------------------------|--------------------------------|
| Cover Pebbling Number   | Is $\gamma(G) \leq k$ ?        | polynomial time <sup>1</sup>   |
| Optimal Pebbling Number | Is $\widehat{\pi}(G) \leq k$ ? | NP-complete                    |
| Pebbling Number         | Is $\pi(G) \leq k$ ?           | $\Pi_2^{\mathrm{P}}$ -complete |

- $\widehat{\pi}(G)$ : min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function f : V(G) → N if there is a sequence of pebbling moves after which: ∀v at least f(v) pebbles on v.
- $\gamma_f(G)$ : min. k such that every dist. of k pebbles covers f.
- $\gamma(G)$ : special case of  $\gamma_f(G)$  where f is the unit distribution.

| Parameter               | Question                       | Complexity                     |
|-------------------------|--------------------------------|--------------------------------|
| Cover Pebbling Number   | Is $\gamma(G) \leq k$ ?        | polynomial time <sup>1</sup>   |
| Optimal Pebbling Number | Is $\widehat{\pi}(G) \leq k$ ? | NP-complete                    |
| Pebbling Number         | Is $\pi(G) \leq k$ ?           | $\Pi_2^{\mathrm{P}}$ -complete |

#### **Open Problems**

• Recall: always  $\pi(G) \ge |V(G)|$ .

<sup>&</sup>lt;sup>1</sup>Vuong–Wyckoff, Sjöstrand

- $\widehat{\pi}(G)$ : min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function f : V(G) → N if there is a sequence of pebbling moves after which: ∀v at least f(v) pebbles on v.
- $\gamma_f(G)$ : min. k such that every dist. of k pebbles covers f.
- $\gamma(G)$ : special case of  $\gamma_f(G)$  where f is the unit distribution.

| Parameter               | Question                       | Complexity                     |
|-------------------------|--------------------------------|--------------------------------|
| Cover Pebbling Number   | Is $\gamma(G) \leq k$ ?        | polynomial time <sup>1</sup>   |
| Optimal Pebbling Number | Is $\widehat{\pi}(G) \leq k$ ? | NP-complete                    |
| Pebbling Number         | Is $\pi(G) \leq k$ ?           | $\Pi_2^{\mathrm{P}}$ -complete |

#### **Open Problems**

- Recall: always  $\pi(G) \ge |V(G)|$ .
- What is the complexity of deciding whether  $\pi(G) = |V(G)|$ ?

<sup>&</sup>lt;sup>1</sup>Vuong–Wyckoff, Sjöstrand

- $\widehat{\pi}(G)$ : min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function f : V(G) → N if there is a sequence of pebbling moves after which: ∀v at least f(v) pebbles on v.
- $\gamma_f(G)$ : min. k such that every dist. of k pebbles covers f.
- $\gamma(G)$ : special case of  $\gamma_f(G)$  where f is the unit distribution.

| Parameter               | Question                       | Complexity                     |
|-------------------------|--------------------------------|--------------------------------|
| Cover Pebbling Number   | Is $\gamma(G) \leq k$ ?        | polynomial time <sup>1</sup>   |
| Optimal Pebbling Number | Is $\widehat{\pi}(G) \leq k$ ? | NP-complete                    |
| Pebbling Number         | Is $\pi(G) \leq k$ ?           | $\Pi_2^{\mathrm{P}}$ -complete |

#### **Open Problems**

- Recall: always  $\pi(G) \ge |V(G)|$ .
- What is the complexity of deciding whether  $\pi(G) = |V(G)|$ ?
- Approximation algorithms for  $\pi(G)$ .

<sup>&</sup>lt;sup>1</sup>Vuong–Wyckoff, Sjöstrand