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I A pebbling move removes two pebbles
from a vertex and places one on a
neighbor

I reachability: Given a graph G with
pebbles and a target r , can we put a
pebble on r?

I In this example: yes

I Are there fast algorithms for this problem?

I Probably not: many problems are special
cases of reachability
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Computational Complexity: NP-completeness
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I Early 1970’s: Stephen Cook and Leonid Levin independently
made a remarkable discovery about a problem “3sat”:

I For each problem L in NP, it is possible to quickly convert
instances of L to instances of 3sat.

I The procedure that translates instances of L to instances of
3sat is called a reduction.

Theorem (Cook; Levin)

3sat is NP-complete.
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Fact
reachability is in NP.

Theorem
There is a polynomial time reduction from 3sat to
reachability.

Corollary (Hurlbert-Kierstead; Watson; Clark-Milans)

reachability is NP-complete. If there is a polynomial time
algorithm for reachability, then P=NP.
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3sat

I ∧ means “and”, ∨ means “or”, x means “not x”

I A boolean formula in 3CNF:

φ = (w ∨ x) ∧ (w ∨ x) ∧ (w ∨ y ∨ z) ∧ (x ∨ y ∨ z)

I 3sat: Given a 3CNF formula φ, is φ satisfiable?

Definition
A 3CNF formula φ is simple if

1. each variable appears at most twice in its positive form, and

2. each variable appears at most once in its negative form.

Proposition

There is a polynomial time algorithm to convert a 3CNF formula
to an equivalent simple 3CNF formula.
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3sat to reachability

3sat reachability

s3sat npr

I Step 1. Straightforward.

I Step 2. npr: Given a graph G with pebbles and a target r ,
can we put a pebble on r using each edge at most once?

I Step 3. Replace each edge with a “one-use” path.

a b

1 1 1 1 1 1 1
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can we put a pebble on r using each edge at most once?
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Theorem
reachability is NP-complete even for bipartite graphs with
∆(G ) ≤ 3 and at most 2 pebbles on each vertex.
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I Roughly: P is to NP as NP is to ΠP
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I How difficult can ΠP
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I (Probably) can’t solve them quickly, even if you have a
magical device that solves problems in NP instantly.

I Just like P vs. NP, most believe that NP ( ΠP
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I Analogous to 3sat in NP: ∀∃3sat in ΠP
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I (Probably) can’t solve them quickly, even if you have a
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I 3sat example:

∃w∃y∃x∃z

(w ∨ x) ∧ (w ∨ x) ∧ (w ∨ y ∨ z) ∧ (x ∨ y ∨ z)

I ∀∃3sat example:

∀w∀y∃x∃z (w ∨ x) ∧ (w ∨ x) ∧ (w ∨ y ∨ z) ∧ (x ∨ y ∨ z)

I ∀∃3sat example is a “no” instance: if w is false, first two
clauses are unsatisfiable.
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Theorem
There is a polynomial time reduction from ∀∃3sat to
pebbling-number.

Corollary

pebbling-number is ΠP
2 -complete.
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Complexity of Pebbling Number Variants

I π̂(G ): min. k such that there is a solvable dist. of size k .

I A dist. of pebbles covers a function f : V (G )→ N if there is
a sequence of pebbling moves after which: ∀v at least f (v)
pebbles on v .

I γf (G ): min. k such that every dist. of k pebbles covers f .

I γ(G ): special case of γf (G ) where f is the unit distribution.

Parameter Question Complexity

Cover Pebbling Number Is γ(G ) ≤ k? polynomial time

Optimal Pebbling Number Is π̂(G ) ≤ k? NP-complete

Pebbling Number Is π(G ) ≤ k? ΠP
2 -complete

Open Problems

I Recall: always π(G ) ≥ |V (G )|.
I What is the complexity of deciding whether π(G ) = |V (G )|?
I Approximation algorithms for π(G ).
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