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A pebbling move removes two pebbles
from a vertex and places one on a
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REACHABILITY: Given a graph G with
pebbles and a target r, can we put a
pebble on r?

» In this example: yes
» Are there fast algorithms for this problem?

» Probably not: many problems are special

cases of REACHABILITY
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» Early 1970's: Stephen Cook and Leonid Levin independently
made a remarkable discovery about a problem “3SAT":

» For each problem L in NP, it is possible to quickly convert
instances of L to instances of 3SAT.

» The procedure that translates instances of L to instances of
3SAT is called a reduction.
Theorem (Cook; Levin)
3SAT is NP-complete.
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Fact
REACHABILITY is in NP.

Theorem
There is a polynomial time reduction from 3SAT to
REACHABILITY.

Corollary (Hurlbert-Kierstead; Watson; Clark-Milans)

REACHABILITY is NP-complete. If there is a polynomial time
algorithm for REACHABILITY, then P=NP.
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» A means “and”, V means “or”, X means “not x"
» A boolean formula in 3CNF:
dp=(wWVX)AN(WVX)AWVyYyVz)A(xVYVZ)

» 3SAT: Given a 3CNF formula ¢, is ¢ satisfiable?

Definition
A 3CNF formula ¢ is simple if
1. each variable appears at most twice in its positive form, and

2. each variable appears at most once in its negative form.

Proposition
There is a polynomial time algorithm to convert a 3CNF formula
to an equivalent simple 3CNF formula.
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» Step 1. Straightforward.

» Step 2. NPR: Given a graph G with pebbles and a target r,
can we put a pebble on r using each edge at most once?

» Step 3. Replace each edge with a “one-use” path.
a —1——~2Q—0Q——~a2Q——a2Q—2—~AQ—b
Theorem

REACHABILITY is NP-complete even for bipartite graphs with
A(G) < 3 and at most 2 pebbles on each vertex.
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» A distribution of pebbles is solvable if every vertex is reachable
» 7(G): min k such that each dist. of k pebbles is solvable.
» PEBBLING-NUMBER: given G and k, is 7(G) < k?
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> 3SAT example:

dwIydxIz WV X)A(WVX)A(WVyYyVz)A(xVYVZ)
> VA3SAT example:

VwVy3dxdz (wVX)A(wVX)A(WVyVz)A(xVyVZ)

> VA3SAT example is a “no” instance: if w is false, first two
clauses are unsatisfiable.
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Theorem
There is a polynomial time reduction from YA3SAT to
PEBBLING-NUMBER.

Corollary
PEBBLING-NUMBER is 4-complete.
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» 7(G): min. k such that there is a solvable dist. of size k.

» A dist. of pebbles covers a function f : V(G) — N if there is
a sequence of pebbling moves after which: Vv at least f(v)
pebbles on v.

» 77(G): min. k such that every dist. of k pebbles covers f.

» v(G): special case of v¢(G) where f is the unit distribution.

Parameter \ Question \ Complexity

Cover Pebbling Number Is v(G) < k? | polynomial time!
Optimal Pebbling Number | Is 7(G) < k? NP-complete
Pebbling Number Is 7(G) < k? N5 -complete

Open Problems

> Recall: always 7(G) > |V(G)|.
» What is the complexity of deciding whether 7(G) = |V(G)|?

» Approximation algorithms for 7(G).

Vuong-Wyckoff, Sjéstrand
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