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Parity Vectors
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Consider a graph G whose
edges E(G) are assigned
colors from a set C. Let
f : E(G) → C denote the
coloring.

Let W be a walk in G. The
parity vector πf (W ) records,
for each c ∈ C, the parity of
the number of times W
traverses an edge with color c.

We also abuse notation and
use πf (W ) as the set of colors
that appear an odd number of
times in W
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Definition
A parity walk is a walk W with
π(W ) =

−→
0 .

Parity walks can be closed ...

... or open.
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Hypercubes and Parity Walks

Notation

If W1 is a uv -walk and W2 is a vw-walk, then W1W2 is the
uw-walk given by the concatenation of W1 and W2. Similarly,
W1 is the vu-walk obtained by reversing W1.

Definition

The hypercube Qk is the graph with vertex set {0, 1}k with an
edge between u and v iff u and v differ in 1 coordinate.
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Hypercubes and Parity Walks

Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Qk iff there is
an edge-coloring of G using at most k colors such that

∀W W is a parity walk ⇐⇒ W is closed
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Proof.

(=⇒). Color an edge e in G according to the coordinate of Qk

that e crosses.
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Hypercubes and Parity Walks

Proof.

(⇐=). Fix such an edge-coloring, let r be a vertex in G, let T be
a spanning tree of G, and for each vertex u, let Pu be the ru-path
in T . We define an embedding φ : V (G) → V (Qk ) via

φ(u) = π(Pu).

φ is injective: If φ(u) = φ(v), then PuPv is a parity walk and
hence closed, so u = v .

φ respects edges: Let uv ∈ E(G). Then PuPv vu is closed
and hence a parity walk. It follows that φ(u) and φ(v) differ
only in the coordinate indexed by the color on uv .
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∀W W is a parity walk =⇒ W is closed

Some graphs (e.g. odd cycles, K2,3) are not subgraphs of
any hypercube

All graphs have an edge-coloring in which every parity walk
is closed
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Hypercubes and Parity Walks

Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Qk iff there is
an edge-coloring of G using at most k colors such that

∀W W is a parity walk ⇐⇒ W is closed

Definition

A strong parity edge-coloring (spec) is an edge-coloring such
that

∀W W is a parity walk =⇒ W is closed

In any edge-coloring of a tree, every closed walk is a parity
walk.



Introduction Cliques Open Problems

Hypercubes and Parity Walks

Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Qk iff there is
an edge-coloring of G using at most k colors such that

∀W W is a parity walk ⇐⇒ W is closed

Definition

A strong parity edge-coloring (spec) is an edge-coloring such
that

∀W W is a parity walk =⇒ W is closed

Corollary

A tree T is a subgraph of Qk iff there is a spec of T using at
most k colors.
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How Many Colors?

Definition

The strong parity edge chromatic number p̂(G) is the least k
such that G has a spec using only k colors.

First inequalities: ∆(G) ≤ χ′(G) ≤ p̂(G) ≤ |E(G)|
Monotonicity: H ⊆ G =⇒ p̂(H) ≤ p̂(G)

Adding edges: if G − e is connected, then
p̂(G) ≤ p̂(G − e) + 1
Trees: p̂(T ) is the least k such that T ⊆ Qk

Hypercube lower bound: if G is connected and T is any
spanning subtree, then p̂(G) ≥ p̂(T ) ≥ dlg n(G)e
Paths: p̂(Pn) = dlg ne
Even cycles: p̂(C2n) = dlg 2ne
Odd cycles: p̂(C2n+1) = ?
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What is p̂(Cn) when n is odd?

C9

p̂(Cn) ≥ dlg ne

p̂(Cn) ≤ p̂(Pn) + 1 = dlg ne+ 1
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Summary

p̂(Cn) ∈ {dlg ne , dlg ne+ 1}

Example

p̂(C3) ∈ {2, 3}
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What is p̂(Cn) when n is odd?

Summary

p̂(Cn) ∈ {dlg ne , dlg ne+ 1}

Example

p̂(C3) = 3
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Summary

p̂(Cn) ∈ {dlg ne , dlg ne+ 1}

Example

p̂(C5) ∈ {3, 4}
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Summary

p̂(Cn) ∈ {dlg ne , dlg ne+ 1}

Example

p̂(C5) = 4
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What is p̂(Cn) when n is odd?

Theorem
For odd n,

p̂(Cn) = dlg ne+ 1.
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What is p̂(Cn) when n is odd?

Proof.

We show p̂(P2n) ≤ p̂(Cn).

Fix a spec on Cn.

Color P2n by “unrolling” the
cycle.

Walks in P2n “lift” to walks in
Cn with the same parity vector.

Open walks that lift to open
walks are okay.

Open walks that lift to closed
walks have odd length.
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What is p̂(Kn)?

Example

p̂(K1) = 0

p̂(K2) = 1

p̂(K3) = 3

Proposition

If n = 2k , then p̂(Kn) = n − 1.

Proof.

Label the vertices from {0, 1}k

and color an edge uv with
u + v . We call this the canonical
coloring.
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Example

p̂(K1) = 0

p̂(K2) = 1

p̂(K3) = 3

p̂(K4) = 3

p̂(K5) = ?

Proposition

If n = 2k , then p̂(Kn) = n − 1.

Proof.

Label the vertices from {0, 1}k

and color an edge uv with
u + v . We call this the canonical
coloring.
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What is p̂(Kn)?

Example

p̂(K1) = 0

p̂(K2) = 1

p̂(K3) = 3

p̂(K4) = 3

p̂(K5) ∈ {4, 5, 6, 7}

Proposition

If n = 2k , then p̂(Kn) = n − 1.

Proof.

Label the vertices from {0, 1}k

and color an edge uv with
u + v . We call this the canonical
coloring.
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p̂(K2) = 1
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p̂(K5) = 7

Proposition

If n = 2k , then p̂(Kn) = n − 1.

Proof.

Label the vertices from {0, 1}k

and color an edge uv with
u + v . We call this the canonical
coloring.
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Main Theorem

Theorem

p̂(Kn) = 2dlg ne − 1

Lemma (Augmentation)

If n is not a power of two, then p̂(Kn) = p̂(Kn+1).
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Lemma (Augmentation)

If n is not a power of two, then p̂(Kn) = p̂(Kn+1).

Theorem

A spec of G is perfect if it uses ∆(G) colors. If f is a perfect
spec of Kn, then n is a power of two and f is the canonical
coloring.

Proof (sketch).

Starting with a single vertex, the proof finds larger and larger
canonically colored subgraphs of Kn inductively.
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If n is not a power of two, then p̂(Kn) = p̂(Kn+1).

Theorem

A spec of G is perfect if it uses ∆(G) colors. If f is a perfect
spec of Kn, then n is a power of two and f is the canonical
coloring.

If n is not a power of two, each vertex misses a color
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with a
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Choose another vertex w . How do
we color uw?

Let b = f (vw)

By Triple Color Lemma, there is a
closed walk W with
πf (W ) = { a , b , c }.
Color uw with c .

Let g be the coloring of Kn+1.
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We show that g is a spec.

By Spec Characterization Lemma, it
suffices to show that Lg ⊆ Lf .

By Basis Lemma, it suffices to show,
for each triangle T containing v ,
πg(T ) ∈ Lf .

If u 6∈ T , then πg(T ) = πf (T ) ∈ Lf .
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An Application
Definition

Let f (x1, . . . , xk ) be a function from sets to sets.

A pattern is a subset S ⊆ [k ].

Given a and A1, . . . , Ak , we say that a matches S if, for all i ,
a ∈ Ai ⇐⇒ i ∈ S.

f is a boolean function if there exists a collection of
patterns S such that for all a and A1, . . . , Ak ,

a ∈ f (A1, . . . , Ak ) ⇐⇒ ∃S ∈ S a matchesS.

We say that f is a nontrivial boolean function if
1 ≤ |S| ≤ 2k − 1.

Example

Symmetric difference f (x1, x2) = x1 4 x2 is a nontrivial boolean
function: S = {{1}, {2}}.
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An Application

Theorem (Daykin, Lovász (1974))

Let f be a nontrivial boolean function and let F be a family of n
finite sets. Then

|{f (A1, . . . , Ak ) : ∀i Ai ∈ F}| ≥ n.
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An Application

Theorem (Daykin, Lovász (1974))

Let F be a family of n finite sets, and let

G = {A1 4 A2 : A1 6= A2 andA1, A2 ∈ F} .

Then |G| ≥ n − 1. If n is not a power of two, then |G| ≥ n.

Quotation (with changes in notation)

“The example where F is all subsets of a [finite set] show that
the theorem is best possible. Closer examination of the proof
shows that if |G| = n − 1 then F is very similar to the former
example, but details are omitted.”
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An Application

Corollary

Let F be a family of n finite sets, and let

G = {A1 4 A2 : A1 6= A2 andA1, A2 ∈ F} .

Then |G| ≥ 2dlg ne − 1.

Proof.

View F as the vertex set of Kn. Coloring an edge A1A2 with the
symmetric difference of A1 and A2, we obtain a spec of Kn

using only colors from G. The bound on |G| follows.
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Tournaments

Proposition

If T is an n-vertex tournament, then p̂(T ) ≥ dlg ne.

Question

What is the maximum of p̂(T ) when T is an n-vertex
tournament?

Is it O(log n)?
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p̂(G � H) ≤ p̂(G) + p̂(H)

Question

For which graphs G, H does equality hold?

Does it hold for all graphs?



Introduction Cliques Open Problems

Graph Products

Proposition

p̂(G � H) ≤ p̂(G) + p̂(H)

Question

For which graphs G, H does equality hold?

Does it hold for all graphs?



Introduction Cliques Open Problems

Graph Products

Proposition

p̂(G � H) ≤ p̂(G) + p̂(H)

Question

For which graphs G, H does equality hold?

Does it hold for all graphs?



Introduction Cliques Open Problems

What is p̂(Km,n)?

Theorem

Let m ≤ n and m′ = 2dlg me. Then

p̂(Km,n) ≤ m′
⌈ n

m′

⌉
.

Further,
p̂(K2,n) = n + (n mod 2).

Question

What is p̂(Km,n)? Is the upper bound tight?

Does p̂(Kn,n) = 2dlg ne? Note: p̂(K5,5) = 8 and
p̂(K9,9) ∈ {14, 15, 16}.
Lower bounds apply to |{A1 4 A2 : A1 ∈ F1, A2 ∈ F2}| with
m = |F1| and n = |F2|.
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(Regular) Parity Edge-Colorings

Definition

A spec forbids an open parity walk

A parity edge-coloring only forbids an open parity path

The parity edge chromatic number p(G) is the least
number of colors needed for a parity edge-coloring.

Questions

Does p(Kn) = 2dlg ne? Note p(K5) = 7 and p(K9) = 15.

In general, p(G) 6= p̂(G). Does equality hold for all bipartite
graphs?
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Stability of the Canonical Coloring

Question (Dhruv Mubayi)

Is there a (strong) parity edge-coloring of K2k which uses only
(1 + o(1))2k colors but is “far” from the canonical coloring?
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Thanks

Many other open problems in our paper.

Thank You.
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