◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Parity Edge-Coloring of Graphs

Kevin Milans

milans@uiuc.edu

Joint work with David P. Bunde, Douglas B. West, Hehui Wu University of Illinois at Urbana-Champaign

6 April 2006 Illinois State University DISCMATH Seminar

Cliques

Parity Vectors

 Consider a graph G whose edges E(G) are assigned colors from a set C. Let f : E(G) → C denote the coloring.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Cliques 000000000

Parity Vectors

- Consider a graph G whose edges E(G) are assigned colors from a set C. Let f : E(G) → C denote the coloring.
- Let *W* be a walk in *G*. The parity vector $\pi_f(W)$ records, for each $c \in C$, the parity of the number of times *W* traverses an edge with color *c*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Cliques

Parity Vectors

- Consider a graph G whose edges E(G) are assigned colors from a set C. Let f : E(G) → C denote the coloring.
- Let *W* be a walk in *G*. The parity vector $\pi_f(W)$ records, for each $c \in C$, the parity of the number of times *W* traverses an edge with color *c*.
- We also abuse notation and use π_f(W) as the set of colors that appear an odd number of times in W

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Definition

A parity walk is a walk W with $\pi(W) = \vec{0}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Definition

A parity walk is a walk *W* with $\pi(W) = \vec{0}$.

• Parity walks can be closed ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Definition

A parity walk is a walk *W* with $\pi(W) = \vec{0}$.

• Parity walks can be closed ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• ... or open.

Hypercubes and Parity Walks

Notation

If W_1 is a *uv*-walk and W_2 is a *vw*-walk, then $W_1 W_2$ is the *uw*-walk given by the concatenation of W_1 and W_2 . Similarly, $\overline{W_1}$ is the *vu*-walk obtained by reversing W_1 .

Definition

The hypercube Q_k is the graph with vertex set $\{0, 1\}^k$ with an edge between *u* and *v* iff *u* and *v* differ in 1 coordinate.

Hypercubes and Parity Walks

Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Q_k iff there is an edge-coloring of G using at most k colors such that

 $\forall W \; W \text{ is a parity walk} \iff W \text{ is closed}$

Proof.

 (\Longrightarrow) . Color an edge *e* in *G* according to the coordinate of Q_k that *e* crosses.

Proof.

(\Leftarrow). Fix such an edge-coloring, let *r* be a vertex in *G*, let *T* be a spanning tree of *G*, and for each vertex *u*, let P_u be the *ru*-path in *T*. We define an embedding $\phi : V(G) \rightarrow V(Q_k)$ via

$$\phi(u)=\pi(P_u).$$

Proof.

(\Leftarrow). Fix such an edge-coloring, let *r* be a vertex in *G*, let *T* be a spanning tree of *G*, and for each vertex *u*, let P_u be the *ru*-path in *T*. We define an embedding $\phi : V(G) \rightarrow V(Q_k)$ via

$$\phi(u)=\pi(P_u).$$

• ϕ is injective: If $\phi(u) = \phi(v)$, then $\overline{P_u}P_v$ is a parity walk and hence closed, so u = v.

Proof.

(\Leftarrow). Fix such an edge-coloring, let *r* be a vertex in *G*, let *T* be a spanning tree of *G*, and for each vertex *u*, let P_u be the *ru*-path in *T*. We define an embedding $\phi : V(G) \rightarrow V(Q_k)$ via

$$\phi(u)=\pi(P_u).$$

- ϕ is injective: If $\phi(u) = \phi(v)$, then $\overline{P_u}P_v$ is a parity walk and hence closed, so u = v.
- ϕ respects edges: Let $uv \in E(G)$. Then $\overline{P_u}P_vvu$ is closed and hence a parity walk. It follows that $\phi(u)$ and $\phi(v)$ differ only in the coordinate indexed by the color on uv.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Hypercubes and Parity Walks

Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Q_k iff there is an edge-coloring of G using at most k colors such that

 $\forall W \; W \; is \; a \; parity \; walk \iff W \; is \; closed$

 Some graphs (e.g. odd cycles, K_{2,3}) are not subgraphs of any hypercube

Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Q_k iff there is an edge-coloring of G using at most k colors such that

 $\forall W \; W \; is \; a \; parity \; walk \iff W \; is \; closed$

- Some graphs (e.g. odd cycles, K_{2,3}) are not subgraphs of any hypercube
- All graphs have an edge-coloring in which every parity walk is closed

Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Q_k iff there is an edge-coloring of G using at most k colors such that

 $\forall W \; W \text{ is a parity walk} \iff W \text{ is closed}$

Definition

A strong parity edge-coloring (spec) is an edge-coloring such that

 $\forall W \; W \text{ is a parity walk} \implies W \text{ is closed}$

- Some graphs (e.g. odd cycles, K_{2,3}) are not subgraphs of any hypercube
- All graphs have an edge-coloring in which every parity walk is closed

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Hypercubes and Parity Walks

Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Q_k iff there is an edge-coloring of G using at most k colors such that

 $\forall W \; W \text{ is a parity walk} \iff W \text{ is closed}$

Definition

A strong parity edge-coloring (spec) is an edge-coloring such that

 $\forall W \ W \text{ is a parity walk} \implies W \text{ is closed}$

 In any edge-coloring of a tree, every closed walk is a parity walk.

Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Q_k iff there is an edge-coloring of G using at most k colors such that

 $\forall W \; W \text{ is a parity walk} \iff W \text{ is closed}$

Definition

A strong parity edge-coloring (spec) is an edge-coloring such that

 $\forall W \mid W \text{ is a parity walk} \implies W \text{ is closed}$

Corollary

A tree T is a subgraph of Q_k iff there is a spec of T using at most k colors.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

How Many Colors?

Definition

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

How Many Colors?

Definition

The strong parity edge chromatic number $\hat{p}(G)$ is the least k such that G has a spec using only k colors.

• First inequalities: $\Delta(G) \le \chi'(G) \le \widehat{p}(G) \le |E(G)|$

How Many Colors?

Definition

- First inequalities: $\Delta(G) \le \chi'(G) \le \widehat{p}(G) \le |E(G)|$
- Monotonicity: $H \subseteq G \implies \widehat{p}(H) \leq \widehat{p}(G)$

How Many Colors?

Definition

- First inequalities: $\Delta(G) \le \chi'(G) \le \widehat{p}(G) \le |E(G)|$
- Monotonicity: $H \subseteq G \implies \widehat{p}(H) \le \widehat{p}(G)$
- Adding edges: if G e is connected, then $\widehat{p}(G) \leq \widehat{p}(G e) + 1$

How Many Colors?

Definition

- First inequalities: $\Delta(G) \le \chi'(G) \le \widehat{p}(G) \le |E(G)|$
- Monotonicity: $H \subseteq G \implies \widehat{p}(H) \le \widehat{p}(G)$
- Adding edges: if G e is connected, then $\widehat{p}(G) \leq \widehat{p}(G e) + 1$
- Trees: $\widehat{p}(T)$ is the least *k* such that $T \subseteq Q_k$

How Many Colors?

Definition

- First inequalities: $\Delta(G) \le \chi'(G) \le \widehat{p}(G) \le |E(G)|$
- Monotonicity: $H \subseteq G \implies \widehat{p}(H) \le \widehat{p}(G)$
- Adding edges: if G e is connected, then $\widehat{p}(G) \leq \widehat{p}(G e) + 1$
- Trees: $\widehat{p}(T)$ is the least *k* such that $T \subseteq Q_k$
- Hypercube lower bound: if G is connected and T is any spanning subtree, then p̂(G) ≥ p̂(T) ≥ ⌈lg n(G)⌉

How Many Colors?

Definition

- First inequalities: $\Delta(G) \le \chi'(G) \le \widehat{p}(G) \le |E(G)|$
- Monotonicity: $H \subseteq G \implies \widehat{p}(H) \le \widehat{p}(G)$
- Adding edges: if G e is connected, then $\widehat{p}(G) \leq \widehat{p}(G e) + 1$
- Trees: $\widehat{p}(T)$ is the least *k* such that $T \subseteq Q_k$
- Hypercube lower bound: if *G* is connected and *T* is any spanning subtree, then $\hat{p}(G) \ge \hat{p}(T) \ge \lceil \lg n(G) \rceil$
- Paths: $\widehat{p}(P_n) = \lceil \lg n \rceil$

How Many Colors?

Definition

- First inequalities: $\Delta(G) \le \chi'(G) \le \widehat{p}(G) \le |E(G)|$
- Monotonicity: $H \subseteq G \implies \widehat{p}(H) \le \widehat{p}(G)$
- Adding edges: if G e is connected, then $\widehat{p}(G) \leq \widehat{p}(G e) + 1$
- Trees: $\widehat{p}(T)$ is the least *k* such that $T \subseteq Q_k$
- Hypercube lower bound: if *G* is connected and *T* is any spanning subtree, then $\hat{p}(G) \ge \hat{p}(T) \ge \lceil \lg n(G) \rceil$
- Paths: $\widehat{p}(P_n) = \lceil \lg n \rceil$
- Even cycles: $\widehat{p}(C_{2n}) = \lceil \lg 2n \rceil$

How Many Colors?

Definition

- First inequalities: $\Delta(G) \le \chi'(G) \le \widehat{p}(G) \le |E(G)|$
- Monotonicity: $H \subseteq G \implies \widehat{p}(H) \le \widehat{p}(G)$
- Adding edges: if G e is connected, then $\widehat{p}(G) \leq \widehat{p}(G e) + 1$
- Trees: $\widehat{p}(T)$ is the least *k* such that $T \subseteq Q_k$
- Hypercube lower bound: if *G* is connected and *T* is any spanning subtree, then $\hat{p}(G) \ge \hat{p}(T) \ge \lceil \lg n(G) \rceil$
- Paths: $\widehat{p}(P_n) = \lceil \lg n \rceil$
- Even cycles: $\widehat{p}(C_{2n}) = \lceil \lg 2n \rceil$
- Odd cycles: $\hat{p}(C_{2n+1}) = ?$

Introduction

Cliques 000000000 Open Problems

What is $\hat{p}(C_n)$ when *n* is odd?

• $\widehat{p}(C_n) \geq \lceil \lg n \rceil$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction

Cliques

Open Problems

What is $\widehat{p}(C_n)$ when *n* is odd?

• $\widehat{p}(C_n) \ge \lceil \lg n \rceil$ • $\widehat{p}(C_n) \le \widehat{p}(P_n) + 1 = \lceil \lg n \rceil + 1$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで
Open Problems

What is $\hat{p}(C_n)$ when *n* is odd?

Summary

$$\widehat{p}(C_n) \in \{ \lceil \lg n \rceil, \lceil \lg n \rceil + 1 \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Open Problems

What is $\hat{p}(C_n)$ when *n* is odd?

Summary

$$\widehat{p}(C_n) \in \{ \lceil \lg n \rceil, \lceil \lg n \rceil + 1 \}$$

Example

$$\widehat{p}(C_3) \in \{2,3\}$$

(ロ) (型) (主) (主) (三) の(で)

Open Problems

What is $\hat{p}(C_n)$ when *n* is odd?

Summary

$$\widehat{p}(C_n) \in \{ \lceil \lg n \rceil, \lceil \lg n \rceil + 1 \}$$

Example

$$\widehat{p}(C_3) = 3$$

・ロト・日本・日本・日本・日本

Open Problems

What is $\hat{p}(C_n)$ when *n* is odd?

Summary

$$\widehat{p}(C_n) \in \{ \lceil \lg n \rceil, \lceil \lg n \rceil + 1 \}$$

Example

$$\widehat{p}(\mathit{C}_5) \in \{3,4\}$$

・ロト・日本・日本・日本・日本

Open Problems

What is $\hat{p}(C_n)$ when *n* is odd?

Summary

$$\widehat{p}(C_n) \in \{ \lceil \lg n \rceil, \lceil \lg n \rceil + 1 \}$$

Example

$$\widehat{p}(C_5) = 4$$

ロト < 回ト < 三ト < 三ト < 三 の Q (P)

Open Problems

What is $\hat{p}(C_n)$ when *n* is odd?

For odd n,

$$\widehat{p}(C_n) = \lceil \lg n \rceil + 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Cliques 000000000 Open Problems

What is $\hat{p}(C_n)$ when *n* is odd?

Proof.

```
We show \hat{p}(P_{2n}) \leq \hat{p}(C_n).
• Fix a spec on C_n.
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Cliques

Open Problems

What is $\hat{p}(C_n)$ when *n* is odd?

Proof.

We show $\widehat{p}(P_{2n}) \leq \widehat{p}(C_n)$.

- Fix a spec on C_n.
- Color *P*_{2n} by "unrolling" the cycle.

・ コット (雪) (小田) (コット 日)

Cliques

Open Problems

What is $\hat{p}(C_n)$ when *n* is odd?

Proof.

We show $\widehat{p}(P_{2n}) \leq \widehat{p}(C_n)$.

- Fix a spec on C_n.
- Color *P*_{2n} by "unrolling" the cycle.

ヘロト ヘポト ヘヨト ヘヨト

э

Cliques

Open Problems

What is $\hat{p}(C_n)$ when *n* is odd?

Proof.

We show $\widehat{p}(P_{2n}) \leq \widehat{p}(C_n)$.

- Fix a spec on C_n.
- Color *P*_{2n} by "unrolling" the cycle.

ヘロト ヘポト ヘヨト ヘヨト

э

What is $\hat{p}(C_n)$ when *n* is odd?

Proof.

We show $\widehat{p}(P_{2n}) \leq \widehat{p}(C_n)$.

- Fix a spec on C_n.
- Color *P*_{2n} by "unrolling" the cycle.
- Walks in *P*_{2*n*} "lift" to walks in *C_n* with the same parity vector.

ヘロマ ヘ動 マイロマー

э

What is $\hat{p}(C_n)$ when *n* is odd?

Proof.

We show $\widehat{p}(P_{2n}) \leq \widehat{p}(C_n)$.

- Fix a spec on C_n.
- Color *P*_{2n} by "unrolling" the cycle.
- Walks in *P*_{2*n*} "lift" to walks in *C_n* with the same parity vector.

ヘロマ ヘ動 マイロマー

ъ

Open walks that lift to open walks are okay.

What is $\hat{p}(C_n)$ when *n* is odd?

Proof.

We show $\widehat{p}(P_{2n}) \leq \widehat{p}(C_n)$.

- Fix a spec on C_n.
- Color *P*_{2n} by "unrolling" the cycle.
- Walks in P_{2n} "lift" to walks in C_n with the same parity vector.
- Open walks that lift to open walks are okay.
- Open walks that lift to closed walks have odd length.

Example

•
$$\widehat{p}(K_1) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

What is $\hat{p}(K_n)$?

Example

•
$$\widehat{p}(K_1) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

What is $\hat{p}(K_n)$?

Example

•
$$\widehat{p}(K_1) = 0$$

$$\widehat{p}(K_2) = 1$$

•
$$\widehat{p}(K_3) = 3$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

What is $\widehat{p}(K_n)$?

Example

•
$$\widehat{p}(K_1) = 0$$

•
$$\widehat{p}(K_2) = 1$$

•
$$\widehat{p}(K_3) = 3$$

•
$$\widehat{p}(K_4) = ?$$

Cliques •oooooooo

What is $\widehat{p}(K_n)$?

Example

•
$$\widehat{p}(K_1) = 0$$

•
$$\widehat{p}(K_2) = 1$$

•
$$\widehat{p}(K_3) = 3$$

•
$$\widehat{p}(K_4) = ?$$

(ロ) (型) (主) (主) (三) の(で)

What is $\widehat{p}(K_n)$?

Example

•
$$\widehat{p}(K_1) = 0$$

•
$$\widehat{p}(K_2) = 1$$

•
$$\widehat{p}(K_3) = 3$$

•
$$\widehat{p}(K_4) = ?$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What is $\widehat{p}(K_n)$?

Example

•
$$\widehat{p}(K_1) = 0$$

•
$$\widehat{p}(K_2) = 1$$

•
$$\widehat{p}(K_3) = 3$$

•
$$\widehat{p}(K_4) = 3$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What is $\widehat{p}(K_n)$?

Example

•
$$\widehat{p}(K_1) = 0$$

•
$$\widehat{p}(K_2) = 1$$

•
$$\widehat{p}(K_3) = 3$$

•
$$\widehat{p}(K_4) = 3$$

Proposition

If
$$n = 2^k$$
, then $\widehat{p}(K_n) = n - 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

•
$$\widehat{p}(K_1) = 0$$

•
$$\widehat{p}(K_2) = 1$$

•
$$\widehat{p}(K_3) = 3$$

•
$$\widehat{p}(K_4) = 3$$

Proposition

If
$$n = 2^k$$
, then $\widehat{p}(K_n) = n - 1$.

Proof.

Label the vertices from $\{0, 1\}^k$ and color an edge uv with u + v. We call this the canonical coloring.

Example

•
$$\widehat{p}(K_1) = 0$$

•
$$\widehat{p}(K_2) = 1$$

•
$$\widehat{p}(K_3) = 3$$

•
$$\widehat{p}(K_4) = 3$$

•
$$\widehat{p}(K_5) = ?$$

Proposition

If
$$n = 2^k$$
, then $\widehat{p}(K_n) = n - 1$.

Proof.

Label the vertices from $\{0,1\}^k$ and color an edge uv with u + v. We call this the canonical coloring.

Example

• $\widehat{p}(K_1) = 0$

•
$$\widehat{p}(K_2) = 1$$

•
$$\widehat{p}(K_3) = 3$$

•
$$\widehat{p}(K_4) = 3$$

•
$$\widehat{p}(K_5) \in \{4, 5, 6, 7\}$$

Proposition

If
$$n = 2^k$$
, then $\widehat{p}(K_n) = n - 1$.

Proof.

Label the vertices from $\{0,1\}^k$ and color an edge uv with u + v. We call this the canonical coloring.

Example

•
$$\widehat{p}(K_1) = 0$$

•
$$\widehat{p}(K_2) = 1$$

•
$$\widehat{p}(K_3) = 3$$

•
$$\widehat{p}(K_4) = 3$$

•
$$\widehat{p}(K_5) = 7$$

Proposition

If
$$n = 2^k$$
, then $\widehat{p}(K_n) = n - 1$.

Proof.

Label the vertices from $\{0,1\}^k$ and color an edge uv with u + v. We call this the canonical coloring.

Main Theorem

Theorem

$$\widehat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1$$

Main Theorem

Theorem

$$\widehat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1$$

Lemma (Augmentation)

If n is not a power of two, then $\widehat{p}(K_n) = \widehat{p}(K_{n+1})$.

・ロト・日本・モート ヨー うへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main Theorem

Theorem

$$\widehat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1$$

Lemma (Augmentation)

If *n* is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

 Strategy: add vertex, color new edges without introducing an open parity walk.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main Theorem

Theorem

$$\widehat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1$$

Lemma (Augmentation)

If *n* is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

- Strategy: add vertex, color new edges without introducing an open parity walk.
- We have a lot to worry about.

Lemma (Spec Characterization)

Fix an edge-coloring of K_n . There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Lemma (Spec Characterization)

Fix an edge-coloring of K_n . There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Proof.

 Let W' be an open parity uv-walk

Lemma (Spec Characterization)

Fix an edge-coloring of K_n . There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Proof.

(⇒).

- Let W' be an open parity uv-walk
- Let W = W' v u

Lemma (Spec Characterization)

Fix an edge-coloring of K_n . There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Proof.

(⇒).

 Let W' be an open parity uv-walk

• Let
$$W = W' v u$$

•
$$\pi(W) = \{ a \}$$

Lemma (Spec Characterization)

Fix an edge-coloring of K_n . There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Proof.

• Let W be a closed walk with $\pi(W) = \{a\}$

Lemma (Spec Characterization)

Fix an edge-coloring of K_n . There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Proof.

(⇐=).

- Let W be a closed walk with π(W) = { a }
- Let vu be an edge in W of color a

Lemma (Spec Characterization)

Fix an edge-coloring of K_n . There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Proof.

(⇐=).

- Let W be a closed walk with π(W) = { a }
- Let *vu* be an edge in *W* of color **a**
- Let W' be the uv-walk obtained by removing vu
Spec Characterization Lemma

Lemma (Spec Characterization)

Fix an edge-coloring of K_n . There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Proof.

(⇐=).

- Let W be a closed walk with π(W) = { a }
- Let *vu* be an edge in *W* of color **a**
- Let W' be the uv-walk obtained by removing vu
- W' is an open parity walk

Spec Characterization Lemma

Lemma (Spec Characterization)

Fix an edge-coloring of K_n . There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

 Augmentation only worries about introducing closed walks
 W with |π(W)| = 1

・ロト・日本・日本・日本・日本

Spec Characterization Lemma

Lemma (Spec Characterization)

Fix an edge-coloring of K_n . There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

- Augmentation only worries about introducing closed walks W with |π(W)| = 1
- Linear algebra means we can worry even less!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The Parity Space

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{\pi(W) : W \text{ is closed}\}.$$

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{\pi(W) : W \text{ is closed}\}.$$

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{\pi(W) : W \text{ is closed}\}.$$

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{\pi(W) : W \text{ is closed}\}.$$

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{\pi(W) : W \text{ is closed}\}.$$

 L_f is a linear subspace of \mathbb{F}_2^k .

Proof.

- Let W_1 , W_2 be closed walks
- Let P be a path from W_1 to W_2

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Let $W = W_1 P W_2 \overline{P}$

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{\pi(W) : W \text{ is closed}\}.$$

 L_f is a linear subspace of \mathbb{F}_2^k .

Proof.

- Let W_1 , W_2 be closed walks
- Let P be a path from W_1 to W_2
- Let $W = W_1 P W_2 \overline{P}$

4 日 > 4 日 > 4 目 > 4 目 > 1 目 の 4 で

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{\pi(W) : W \text{ is closed}\}.$$

 L_f is a linear subspace of \mathbb{F}_2^k .

Proof. Let W₁, W₂ be closed walks Let P be a path from W₁ to W₂ Let W = W₁PW₂P

・ コット (雪) (小田) (コット 日)

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{\pi(W) : W \text{ is closed}\}.$$

 L_f is a linear subspace of \mathbb{F}_2^k .

Proof.

- Let W_1 , W_2 be closed walks
- Let P be a path from W_1 to W_2

・ コット (雪) (小田) (コット 日)

• Let $W = W_1 P W_2 \overline{P}$

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{\pi(W) : W \text{ is closed}\}.$$

 L_f is a linear subspace of \mathbb{F}_2^k .

Proof.

- Let W_1 , W_2 be closed walks
- Let *P* be a path from W_1 to W_2
- Let $W = W_1 P W_2 \overline{P}$
- $\pi(W) = \pi(W_1) + \pi(W_2) \in L_f$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A Parity Space Basis

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

 $\{\pi(T) : T \text{ is a triangle containing } \mathsf{v}\}\$

is a basis for L_f .

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

 $\{\pi(T): T \text{ is a triangle containing } \mathsf{v}\}\$

is a basis for L_f .

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

 $\{\pi(T) : T \text{ is a triangle containing } v\}$

is a basis for L_f .

- Let W be a closed walk
- W decomposes into cycles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

 $\{\pi(T): T \text{ is a triangle containing } v\}$

is a basis for L_f .

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

 $\{\pi(T) : T \text{ is a triangle containing } \mathsf{v}\}\$

is a basis for L_f .

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

 $\{\pi(T) : T \text{ is a triangle containing } \mathsf{v}\}\$

is a basis for L_f .

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

```
\{\pi(T): T \text{ is a triangle containing } v\}
```

is a basis for L_f .

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

```
\{\pi(T): T \text{ is a triangle containing } v\}
```

is a basis for L_f .

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

```
\{\pi(T) : T \text{ is a triangle containing } \mathsf{v}\}\
```

is a basis for L_f .

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

```
\{\pi(T) : T \text{ is a triangle containing } \mathsf{v}\}\
```

is a basis for L_f .

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

```
\{\pi(T) : T \text{ is a triangle containing } \mathsf{v}\}\
```

is a basis for L_f .

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

```
\{\pi(T) : T \text{ is a triangle containing } v\}
```

is a basis for L_f .

Proof (sketch).

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles
- Cycle containing v as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

```
\{\pi(T) : T \text{ is a triangle containing } v\}
```

is a basis for L_f .

Proof (sketch).

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles
- Cycle containing v as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

```
\{\pi(T) : T \text{ is a triangle containing } v\}
```

is a basis for L_f .

Proof (sketch).

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles
- Cycle containing v as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

```
\{\pi(T): T \text{ is a triangle containing } v\}
```

is a basis for L_f .

Proof (sketch).

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles
- Cycle containing v as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

```
\{\pi(T) : T \text{ is a triangle containing } v\}
```

is a basis for L_f .

Proof (sketch).

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles
- Cycle containing v as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

```
\{\pi(T) : T \text{ is a triangle containing } v\}
```

is a basis for L_f .

Proof (sketch).

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles
- Cycle containing v as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

```
\{\pi(T) : T \text{ is a triangle containing } v\}
```

is a basis for L_f .

Proof (sketch).

- Let W be a closed walk
- W decomposes into cycles
- Cycle not containing *v* as sum of triangles
- Cycle containing v as sum of triangles

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

 $\{\pi(T): T \text{ is a triangle containing } \mathsf{v}\}\$

is a basis for L_f .

 Augmentation only worries about triangles at v

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

 $\{\pi(T) : T \text{ is a triangle containing } \mathsf{v}\}\$

is a basis for L_f .

- Augmentation only worries about triangles at v
- Attack from other direction

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

 $\{\pi(T) : T \text{ is a triangle containing } \mathsf{v}\}\$

is a basis for L_f .

- Augmentation only worries about triangles at v
- Attack from other direction
- Argue K_n has a rich parity space, before augmentation

Triple Color Lemma

Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n . Then for every pair of colors $\{a, b\}$, there is a third color **c** and a closed walk W with $\pi(W) = \{a, b, c\}$.

Triple Color Lemma

Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n . Then for every pair of colors $\{a, b\}$, there is a third color **c** and a closed walk W with $\pi(W) = \{a, b, c\}$.

Triple Color Lemma

Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n . Then for every pair of colors $\{a, b\}$, there is a third color **c** and a closed walk W with $\pi(W) = \{a, b, c\}$.

Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n . Then for every pair of colors $\{a, b\}$, there is a third color **c** and a closed walk W with $\pi(W) = \{a, b, c\}$.

Proof.

- Collapse a and b to new color d to form coloring g
- g is not a spec
- Let W' be a parity uv-walk

Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n . Then for every pair of colors $\{a, b\}$, there is a third color **c** and a closed walk W with $\pi(W) = \{a, b, c\}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n . Then for every pair of colors $\{a, b\}$, there is a third color **c** and a closed walk W with $\pi(W) = \{a, b, c\}$.

Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n . Then for every pair of colors $\{a, b\}$, there is a third color **c** and a closed walk W with $\pi(W) = \{a, b, c\}$.

Proof. • $\pi_g(W') = \emptyset$ • $\pi_f(W') = \{ a, b \}$ • Let c = f(uv), let W = W'vu

Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n . Then for every pair of colors $\{a, b\}$, there is a third color **c** and a closed walk W with $\pi(W) = \{a, b, c\}$.

Uniqueness of Perfect Specs of K_n

Lemma (Augmentation)

If *n* is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Uniqueness of Perfect Specs of K_n

Lemma (Augmentation)

If *n* is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Theorem

A spec of G is perfect if it uses $\Delta(G)$ colors. If f is a perfect spec of K_n , then n is a power of two and f is the canonical coloring.

Uniqueness of Perfect Specs of K_n

Lemma (Augmentation)

If *n* is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Theorem

A spec of G is perfect if it uses $\Delta(G)$ colors. If f is a perfect spec of K_n , then n is a power of two and f is the canonical coloring.

Proof (sketch).

Starting with a single vertex, the proof finds larger and larger canonically colored subgraphs of K_n inductively.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Uniqueness of Perfect Specs of K_n

Lemma (Augmentation)

If *n* is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Theorem

A spec of G is perfect if it uses $\Delta(G)$ colors. If f is a perfect spec of K_n , then n is a power of two and f is the canonical coloring.

• If *n* is not a power of two, each vertex misses a color

Lemma (Augmentation)

If *n* is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Augmentation Lemma

Lemma (Augmentation)

If *n* is not a power of two, then
$$\widehat{p}(K_n) = \widehat{p}(K_{n+1})$$
.

V

Kn

Cliques

Augmentation Lemma

Lemma (Augmentation)

If *n* is not a power of two, then
$$\hat{p}(K_n) = \hat{p}(K_{n+1})$$
.

Proof.

- Choose a vertex v
- Because n is not a power of two, v is not incident to some color

・ロット (雪) ・ (日) ・ (日)

3

Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then
$$\hat{p}(K_n) = \hat{p}(K_{n+1})$$
.

Proof.

- Choose a vertex v
- Because n is not a power of two, v is not incident to some color
- Introduce a new vertex u. Color uv with a

・ロト・西ト・ヨト・日下 ひゃぐ

э.

Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then
$$\widehat{p}(K_n) = \widehat{p}(K_{n+1})$$
.

Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then
$$\widehat{p}(K_n) = \widehat{p}(K_{n+1})$$
.

Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then
$$\widehat{p}(K_n) = \widehat{p}(K_{n+1})$$
.

Proof.

• Choose another vertex *w*. How do we color *uw*?

• Let
$$\mathbf{b} = f(vw)$$

By Triple Color Lemma, there is a closed walk W with

$$\pi_f(W) = \{ a, b, c \}.$$

・ロト・日本・日本・日本・日本・日本

Augmentation Lemma

Lemma (Augmentation)

If *n* is not a power of two, then
$$\hat{p}(K_n) = \hat{p}(K_{n+1})$$
.

Proof.

• Choose another vertex *w*. How do we color *uw*?

• Let
$$\mathbf{b} = f(vw)$$

By Triple Color Lemma, there is a closed walk W with

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$\pi_f(W) = \{ a, b, c \}.$$

• Color *uw* with **c**.

Augmentation Lemma

Lemma (Augmentation)

If *n* is not a power of two, then
$$\hat{p}(K_n) = \hat{p}(K_{n+1})$$
.

Proof.

• Choose another vertex *w*. How do we color *uw*?

• Let
$$\mathbf{b} = f(vw)$$

• By Triple Color Lemma, there is a closed walk *W* with

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$\pi_f(W) = \{ a, b, c \}.$$

- Color *uw* with **c**.
- Let g be the coloring of K_{n+1} .

э

Augmentation Lemma

Lemma (Augmentation)

If *n* is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Augmentation Lemma

Lemma (Augmentation)

If *n* is not a power of two, then
$$\hat{p}(K_n) = \hat{p}(K_{n+1})$$
.

Proof.

- We show that g is a spec.
- By Spec Characterization Lemma, it suffices to show that L_g ⊆ L_f.

・ロト・西ト・西ト・西ト・日 うくの

Lemma (Augmentation)

If n is not a power of two, then
$$\hat{p}(K_n) = \hat{p}(K_{n+1})$$
.

Proof.

- We show that g is a spec.
- By Spec Characterization Lemma, it suffices to show that L_g ⊆ L_f.
- By Basis Lemma, it suffices to show, for each triangle *T* containing *ν*, π_g(*T*) ∈ L_f.

・ロット (雪) ・ (日) ・ (日)

-

Lemma (Augmentation)

If n is not a power of two, then
$$\widehat{p}(K_n) = \widehat{p}(K_{n+1})$$
.

Proof.

- We show that g is a spec.
- By Spec Characterization Lemma, it suffices to show that L_g ⊆ L_f.
- By Basis Lemma, it suffices to show, for each triangle *T* containing *ν*, π_g(*T*) ∈ L_f.
- If $u \notin T$, then $\pi_g(T) = \pi_f(T) \in L_f$.

・ コット (雪) (小田) (コット 日)

Lemma (Augmentation)

If n is not a power of two, then $\widehat{p}(K_n) = \widehat{p}(K_{n+1})$.

Proof.

 Otherwise, *T* = *uvwu* for some *w* in *K_n* and π_g(*T*) = π_f(*W*) ∈ *L_f* for some closed walk *W* by definition of *g*.

・ロット (雪) ・ (日) ・ (日)

э

Lemma (Augmentation)

If n is not a power of two, then
$$\widehat{p}(K_n) = \widehat{p}(K_{n+1})$$
.

Proof.

- Otherwise, T = uvwu for some w in K_n and $\pi_g(T) = \pi_f(W) \in L_f$ for some closed walk W by definition of g.
- Hence, g is a spec.

・ロト・西ト・西ト・西・ うろの

Introd 0000	uction	Cliques oooooooo●	Open Problems	
An Application				
	Definition			
	• Let $f(x_1,\ldots,x_k)$ be a function	unction from sets to sets.		

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Introd	uction Cliques	Open Problems		
An Application				
	Definition			
	• Let $f(x_1, \ldots, x_k)$ be a function from sets to sets	i.		
	• A pattern is a subset $S \subseteq [k]$.			

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Introduction	Cliques	Open Problems
	00000000	

An Application

Definition

- Let $f(x_1, \ldots, x_k)$ be a function from sets to sets.
- A pattern is a subset $S \subseteq [k]$.
- Given *a* and A_1, \ldots, A_k , we say that *a* matches *S* if, for all *i*, $a \in A_i \iff i \in S$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

An Application

Definition

- Let $f(x_1, \ldots, x_k)$ be a function from sets to sets.
- A pattern is a subset $S \subseteq [k]$.
- Given *a* and A_1, \ldots, A_k , we say that *a* matches *S* if, for all *i*, $a \in A_i \iff i \in S$.
- *f* is a boolean function if there exists a collection of patterns S such that for all *a* and A₁,..., A_k,

$$a \in f(A_1, \ldots, A_k) \iff \exists S \in S \quad a \text{ matches } S.$$

(日) (日) (日) (日) (日) (日) (日)

An Application

Definition

- Let $f(x_1, \ldots, x_k)$ be a function from sets to sets.
- A pattern is a subset $S \subseteq [k]$.
- Given *a* and A_1, \ldots, A_k , we say that *a* matches *S* if, for all *i*, $a \in A_i \iff i \in S$.
- *f* is a boolean function if there exists a collection of patterns S such that for all *a* and A₁,..., A_k,

$$a \in f(A_1, \ldots, A_k) \iff \exists S \in S \quad a \text{ matches } S.$$

• We say that *f* is a nontrivial boolean function if $1 \le |S| \le 2^k - 1$.

An Application

Definition

- Let $f(x_1, \ldots, x_k)$ be a function from sets to sets.
- A pattern is a subset $S \subseteq [k]$.
- Given *a* and A_1, \ldots, A_k , we say that *a* matches *S* if, for all *i*, $a \in A_i \iff i \in S$.
- *f* is a boolean function if there exists a collection of patterns S such that for all *a* and A₁,..., A_k,

$$a \in f(A_1, \ldots, A_k) \iff \exists S \in S \quad a \text{ matches } S.$$

• We say that *f* is a nontrivial boolean function if $1 \le |S| \le 2^k - 1$.

Example

Symmetric difference $f(x_1, x_2) = x_1 \bigtriangleup x_2$ is a nontrivial boolean function: $S = \{\{1\}, \{2\}\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An Application

Theorem (Daykin, Lovász (1974))

Let f be a nontrivial boolean function and let ${\mathcal F}$ be a family of n finite sets. Then

$$|\{f(A_1,\ldots,A_k):\forall i \ A_i\in\mathcal{F}\}|\geq n.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

An Application

Theorem (Daykin, Lovász (1974))

Let ${\mathcal F}$ be a family of n finite sets, and let

$$\mathcal{G} = \{A_1 \bigtriangleup A_2 : A_1 \neq A_2 \text{ and } A_1, A_2 \in \mathcal{F}\}.$$

Then $|\mathcal{G}| \ge n - 1$. If n is not a power of two, then $|\mathcal{G}| \ge n$.

An Application

Theorem (Daykin, Lovász (1974))

Let \mathcal{F} be a family of n finite sets, and let

$$\mathcal{G} = \{A_1 \bigtriangleup A_2 : A_1 \neq A_2 \text{ and } A_1, A_2 \in \mathcal{F}\}.$$

Then $|\mathcal{G}| \ge n - 1$. If n is not a power of two, then $|\mathcal{G}| \ge n$.

Quotation

(with changes in notation)

"The example where \mathcal{F} is all subsets of a [finite set] show that the theorem is best possible. Closer examination of the proof shows that if $|\mathcal{G}| = n - 1$ then \mathcal{F} is very similar to the former example, but details are omitted."

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

An Application

Corollary

Let \mathcal{F} be a family of n finite sets, and let

$$\mathcal{G} = \{A_1 \bigtriangleup A_2 : A_1 \neq A_2 \text{ and } A_1, A_2 \in \mathcal{F}\}.$$

Then $|\mathcal{G}| \geq 2^{\lceil \lg n \rceil} - 1$.

An Application

Corollary

Let \mathcal{F} be a family of n finite sets, and let

$$\mathcal{G} = \{A_1 \bigtriangleup A_2 : A_1 \neq A_2 \text{ and } A_1, A_2 \in \mathcal{F}\}.$$

Then $|\mathcal{G}| \geq 2^{\lceil \lg n \rceil} - 1$.

Proof.

View \mathcal{F} as the vertex set of K_n . Coloring an edge A_1A_2 with the symmetric difference of A_1 and A_2 , we obtain a spec of K_n using only colors from \mathcal{G} . The bound on $|\mathcal{G}|$ follows.

Tournaments

Proposition

If *T* is an *n*-vertex tournament, then $\hat{p}(T) \ge \lceil \lg n \rceil$.

Tournaments

Proposition

If *T* is an *n*-vertex tournament, then $\hat{p}(T) \ge \lceil \lg n \rceil$.

Question

What is the maximum of p(T) when T is an n-vertex tournament?

・ロト・西ト・ヨト ・ヨー うへの

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Tournaments

Proposition

If *T* is an *n*-vertex tournament, then $\hat{p}(T) \ge \lceil \lg n \rceil$.

- What is the maximum of p(T) when T is an n-vertex tournament?
- Is it O(log n)?

Graph Products

Proposition

 $\widehat{p}(G \Box H) \leq \widehat{p}(G) + \widehat{p}(H)$

Graph Products

Proposition

 $\widehat{p}(G \Box H) \leq \widehat{p}(G) + \widehat{p}(H)$

Question

• For which graphs G, H does equality hold?

・ロト・西ト・ヨト ・ヨー うへの

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Graph Products

Proposition

$$\widehat{p}(G \Box H) \leq \widehat{p}(G) + \widehat{p}(H)$$

- For which graphs G, H does equality hold?
- Does it hold for all graphs?

What is $\widehat{p}(\overline{K_{m,n}})$?

Theorem

Let
$$m \leq n$$
 and $m' = 2^{\lceil \lg m \rceil}$. Then

$$\widehat{p}(K_{m,n}) \leq m' \left\lceil \frac{n}{m'} \right
ceil$$

Further,

$$\widehat{p}(K_{2,n}) = n + (n \mod 2).$$

What is $\hat{p}(K_{m,n})$?

Theorem

Let
$$m \leq n$$
 and $m' = 2^{\lceil \lg m \rceil}$. Then

$$\widehat{p}(K_{m,n}) \leq m' \left\lceil \frac{n}{m'} \right\rceil$$

Further,

$$\widehat{p}(K_{2,n}) = n + (n \mod 2).$$

Question

• What is $\hat{p}(K_{m,n})$? Is the upper bound tight?

Cliques

What is $\widehat{p}(K_{m,n})$?

Theorem

Let
$$m \leq n$$
 and $m' = 2^{\lceil \lg m \rceil}$. Then

$$\widehat{p}(K_{m,n}) \leq m' \left\lceil \frac{n}{m'} \right\rceil$$

Further,

$$\widehat{p}(K_{2,n}) = n + (n \mod 2).$$

- What is $\hat{p}(K_{m,n})$? Is the upper bound tight?
- Does $\widehat{p}(K_{n,n}) = 2^{\lceil \lg n \rceil}$? Note: $\widehat{p}(K_{5,5}) = 8$ and $\widehat{p}(K_{9,9}) \in \{14, 15, 16\}.$

What is $\widehat{p}(K_{m,n})$?

Theorem

Let
$$m \leq n$$
 and $m' = 2^{\lceil \lg m \rceil}$. Then

$$\widehat{p}(K_{m,n}) \leq m' \left\lceil \frac{n}{m'} \right\rceil$$

Further,

$$\widehat{p}(K_{2,n}) = n + (n \mod 2).$$

- What is $\hat{p}(K_{m,n})$? Is the upper bound tight?
- Does $\hat{p}(K_{n,n}) = 2^{\lceil \lg n \rceil}$? Note: $\hat{p}(K_{5,5}) = 8$ and $\hat{p}(K_{9,9}) \in \{14, 15, 16\}.$
- Lower bounds apply to $|\{A_1 \triangle A_2 : A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\}|$ with $m = |\mathcal{F}_1|$ and $n = |\mathcal{F}_2|$.

Cliques

Open Problems

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(Regular) Parity Edge-Colorings

Definition

A spec forbids an open parity walk

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(Regular) Parity Edge-Colorings

Definition

- A spec forbids an open parity walk
- A parity edge-coloring only forbids an open parity path

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(Regular) Parity Edge-Colorings

Definition

- A spec forbids an open parity walk
- A parity edge-coloring only forbids an open parity path
- The parity edge chromatic number p(G) is the least number of colors needed for a parity edge-coloring.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(Regular) Parity Edge-Colorings

Definition

- A spec forbids an open parity walk
- A parity edge-coloring only forbids an open parity path
- The parity edge chromatic number p(G) is the least number of colors needed for a parity edge-coloring.

• Does
$$p(K_n) = 2^{\lceil \lg n \rceil}$$
? Note $p(K_5) = 7$ and $p(K_9) = 15$.

(Regular) Parity Edge-Colorings

Definition

- A spec forbids an open parity walk
- A parity edge-coloring only forbids an open parity path
- The parity edge chromatic number p(G) is the least number of colors needed for a parity edge-coloring.

- Does $p(K_n) = 2^{\lceil \lg n \rceil}$? Note $p(K_5) = 7$ and $p(K_9) = 15$.
- In general, p(G) ≠ p̂(G). Does equality hold for all bipartite graphs?

Stability of the Canonical Coloring

Question (Dhruv Mubayi)

Is there a (strong) parity edge-coloring of K_{2^k} which uses only $(1 + o(1))2^k$ colors but is "far" from the canonical coloring?

▲□▶▲□▶▲□▶▲□▶ □ のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- Many other open problems in our paper.
- Thank You.