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Abstract

Two sets overlap if they intersect and neither contains the other. Given a family
F of sets, a system of overlap representation (SOR) for F assigns to each set X ∈ F a
subset SX of X, called its representative set, such that the representative sets chosen
for any two overlapping members of F intersect. Let Fn be the family of intervals of
integers contained in {1, . . . , n}, and let f(n) be the minimum of the maximum size of
the sets in an SOR of Fn. We prove (1− o(1)) lg(n− 1) < f(n) ≤ 2 lg(n− 1).

MSC Codes: 05D05, 05D15

1 Introduction

Let F be a family A1, . . . , Am of sets. A system of distinct representatives (SDR) for F is a
set {z1, . . . , zm} of distinct elements such that zi ∈ Ai for 1 ≤ i ≤ m. An obvious necessary
condition for the existence of an SDR is Hall’s Condition, requiring

∣∣⋃
i∈S Ai

∣∣ ≥ |S| for all
S ⊆ [m]. Hall [2] proved that this condition is also sufficient.

In an SDR, each set is trimmed down to a single representative. In this note, we want
to reduce the sets in a family to representing subsets in a way that captures an aspect of
interaction between the sets. Two sets overlap if they intersect and neither contains the
other. A system of overlap representation (SOR) for a family F of sets assigns to each set X
in F a representative set SX contained in X so that SX and SY have nonempty intersection
whenever X and Y overlap.
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The sets in an SDR are small, just size 1. Similarly, we seek SORs with small represen-
tative sets. This could be useful when sets are expensive to access and we need to study the
interactions between one set in the family and the sets with which it overlaps by treating
common members. It should be noted that an SOR does not encode the overlap relation, in
the sense that SX and SY may also intersect when X ⊆ Y .

Motivation for studying SORs comes from the data visualization community. In order to
design efficient representations of set-based data arising in application areas, this community
has studied modified Euler diagrams (see, for example, [1, 5]). As described in [5], the term
“Euler diagram” is used for “graphical representations that depict sets and their intersections.
In an Euler diagram, a set is a region of the plane bounded by a curve and intersections
between sets are depicted through overlaps between these regions”.

Systems of overlap representation offer a compact alternative to visualize families of
intervals where containments are forbidden. Such diagrams may be particularly valuable to
display, preview, or survey large catalogues of interval-based data using only a small number
of feature-rich samples. Such data can arise from text, time-series, electrocardiograms, or
other settings involving location along a single dimension. Algorithms seeking pertinent data
often sample data sets looking for exemplars (particular data points exhibiting desirable
features). For example, in [3] the problem of detecting anomalies in time-series data in
various applications is considered. Carefully arranged exemplars would speed such searches.
An SOR that lists exemplars using a logarithmic number of samples could efficiently guide
such searches. Data visualization becomes more important as data sets grow and machines
must communicate with humans about them.

When F ′ ⊆ F and G is an SOR of F , the family G ′ consisting of {SX ∈ G : X ∈ F ′} is
an SOR of F ′. Therefore, to understand how big the sets in an SOR might need to be, it
makes sense to study the extremal problem when F has many sets on a fixed ground set.
We consider families of integer intervals.

Given integers a and b with a ≤ b, let [a, b] denote {i ∈ Z : a ≤ i ≤ b}. Let Fn denote the
family of intervals [a, b] such that 1 ≤ a ≤ b ≤ n. Let f(n) be the minimum of the maximum
size of the sets in an SOR of Fn. We determine f(n) asymptotically within a factor of 2,
proving

(1− o(1)) lg n ≤ f(n) ≤ 2 lg(n− 1),

where lg denotes the base-2 logarithm.
The problem of determining f(n) can be expressed as an integer linear program. First

we express it using a quadratic program. Introduce variables xI,r for all r ∈ I ∈ Fn, with
xI,r being the 0, 1-indicator variable for r ∈ SI . With xI,r ∈ {0, 1}, we then seek to minimize
z such that

∑
r∈I∩J xI,rxJ,r ≥ 1 when I and J overlap and

∑
r∈I xI,r ≤ z for I ∈ Fn.

The quadratic program can be converted to a linear program by a standard trick. For
each r ∈ I ∩J with I and J overlapping, replace xI,rxJ,r with an auxiliary 0, 1-variable wI,J,r

satisfying wI,J,r ≤ xI,r, wI,J,r ≤ xJ,r, and xI,r + xJ,r ≤ 1 + wI,J,r. The linear program has
confirmed f(n) = dlg(n− 1)e for 2 ≤ n ≤ 18, but the asymptotic behavior remains open.

Question 1. What is the asymptotic behavior of f(n)?
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2 Powers of 2 and the Upper Bound

Our proof of the upper bound on f(n) uses a number-theoretic property that has other
applications, which we will mention after the proof.

Theorem 1. For n a positive integer, f(n) ≤ 2 lg(n− 1).

Proof. Consider an interval [a, b] in Fn. We specify a representative set Sa,b for the interval
[a, b]. For each k with 0 ≤ k ≤ blg(n− 1)c such that 2k divides some number in [a, b], we
include in Sa,b the smallest and largest numbers in [a, b] that are divisible by 2k. Note that
when b = n, the values n is in Sa,b due to k = 0, so allowing k = lg n would be redundant.
When k = blg(n− 1)c there can only be one value contributed by k, so |Sa,b| ≤ 1+2 lg(n−1).
We first prove that this construction suffices, and then we show that the contribution to Sa,b

using k = blg(n− 1)c is not needed.
Given overlapping intervals [a, b] and [c, d] with a ≤ c ≤ b ≤ d, let x be the largest power

of 2 that divides some integer in [c, b]. If two consecutive multiples of x lie in [c, b], then one
of them is an even multiple of x, divisible by 2x, which is a larger power of 2. Thus x divides
exactly one number r in [c, b]. This makes r the least multiple of x in [c, d] and the greatest
multiple of x in [a, b]. Hence r ∈ Sa,b ∩ Sc,d, and the representative sets form an SOR.

Finally, let k = blg(n− 1)c, and suppose that 2k is the only element of [a, b] ∩ [c, d].
If there is no instance of this, then we can discard the contribution due to k from each
representative set. If 2k is not contributed to the intersection by 2k−1, then one of the
intervals contains [2k−1, 3 · 2k−1]. Since the intervals overlap, the other interval also contains
2k−1 or 3 · 2k−1 (since it contains 2k) Now, since 4 · 2k−1 > n, that value lies in Sa,b∩Sc,d.

Note that the representative set for an interval [a, b] given in the proof of Theorem 1 is
the same for all n with n ≥ b. This may explain why the upper bound is not sharper.

In the proof, we used the fact that the largest power of 2 that divides some integer in
an interval [c, b] divides only one number in that interval. This property also yields a short
proof that a nontrivial difference between two harmonic numbers cannot be an integer. The
harmonic number Hn is

∑n
i=1 1/i. Theisinger [6] proved that Hn is not an integer when

n > 1, and Kürschák [4] gave a proof using the property stated here. The same technique
proves the claim more generally for differences of harmonic numbers.

If the difference Hn−Hm is an integer k, then
∑n

i=m+1 n!/i = n!k. Let 2s be the highest
power of 2 dividing a number in the interval [m + 1, n], and let 2t be the highest power of 2
dividing n!. Since 2s divides only one number in the interval, 2t−s+1 divides all but one term
on the left, and hence it does not divide n!k. Since 2t does divide n!k, we conclude s = 0,
and hence m = n− 1. The interval is a single odd integer, so n = 1.

3 The Lower Bound

We prove a lower bound on f(n) in terms of a parameter s. The special case s = 1 yields a
simple argument for a lower bound of (1/2) lg n, but setting s = blg nc improves the lower
bound by an asymptotic factor of 2.
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Theorem 2. For n a positive integer, f(n) > (1− o(1)) lg n.

Proof. Due to the monotonicity of f , it suffices to prove this lower bound for infinitely many
values of n. We will let s = blg nc and assume that n is a multiple of s (essentially, we are
proving the lower bound by considering intervals up to the greatest multiple of s bounded
by n). Let m = n/s.

Partition [n] into s subintervals of length m; call them X1, . . . , Xs. (That is, Xi =
[(i − 1)m + 1, im] for 1 ≤ i ≤ s.) For 1 ≤ i ≤ s − 1, let Ai be the family of intervals
contained in Xi ∪Xi+1 that have the same number of elements from Xi and Xi+1. (That is,
Ai = {[im− j, im + 1 + j] : 0 ≤ j ≤ m− 1}, with left endpoint in Xi and right endpoint in
Xi+1.) Let A0 consist of the subintervals of X1 that contain the element 1, and let As consist
of the subintervals of Xs that contain the element n. Note that |Ai| = m for 0 ≤ i ≤ s.

Let F =
⋃s

i=0Ai, so |F| = (s + 1)m. It suffices to show that every SOR for F contains
some representative set of size at least s

s+1
lgm. Since s

s+1
≥ −1 + lg nlg n, this yields

f(n) ≥ (1− 1/ lg n)(lg n− lg lg n). Given an SOR for F , for 1 ≤ i ≤ s let Ti = {(I, r) : I ∈
Ai−1 ∪ Ai and r ∈ Xi ∩ SI}. We obtain a lower bound on |Ti| and then divide by |F| to
obtain a lower bound on f(n).

Call the elements 1 and n the “trivial” endpoints. Given (I, r) ∈ Ti, there is a unique
nontrivial endpoint of I contained in Xi; call this value p when i is specified. Group the
members (I, r) of Ti according to the logarithm of |r − p|. In particular, for j ≥ 1 let Ti,j be
the subset of Ti consisting of all pairs (I, r) such that 2j−1 ≤ |r − p| ≤ 2j − 1. Let Ti,0 be
the set of pairs (I, r) ∈ Ti such that r itself is the nontrivial endpoint of I in Xi.

For I ∈ Ai with i ≥ 1, there is an interval I ′ ∈ Ai−1 that intersects I precisely at its lower
endpoint. Similarly, when i < s, some interval I ′ in Ai+1 intersects I precisely at its upper
endpoint. The intervals I and I ′ overlap (if neither is {1} or {n}). Thus every interval in
Ai must have its nontrivial endpoints in its representative set. Each element of [n]− {1, n}
is a nontrivial endpoint for two intervals in F , and 1 and n are never nontrivial endpoints.
Hence |

⋃s
i=1 Ti,0| = 2(n− 2).

Let k = blgmc. We claim |Ti,j| ≥ m − 2j − 1 for 1 ≤ j ≤ k. Since |Xi| = m, there are
m − 2j − 1 subintervals of Xi having size 2j that are disjoint from {minXi,maxXi}. For
each such subinterval [a, b], we next obtain a member of Ti,j. The interval I ∈ Ai−1 ending
at b and the interval I ′ ∈ Ai starting at a overlap and have intersection [a, b]. Hence some
point r ∈ [a, b] is in both SI and SI′ . The interval [a, b] has 2j elements. If r is in the lower
half, then its distance from b is at least 2j−1 and is less than 2j, putting (I, r) into Ti,j.
Otherwise, the same reasoning puts (I ′, r) into Ti,j. This completes the proof of the lower
bound on |Ti,j|.
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Now we compute∣∣∣∣∣
s⋃

i=1

Ti

∣∣∣∣∣ ≥
s∑

i=1

k∑
j=0

|Ti,j| ≥ 2(n− 2) + s

k∑
j=1

(
m− 2j − 1

)
= 2(n− 2) + ks(m− 1)− 2s(2k − 1)

≥ (2s + ks− 2s)(m− 1)

= ks(m− 1).

By the pigeonhole principle, some interval I in F has a representative set of size at least
|T |/|F|, where T =

⋃s
i=1 Ti. Since |F| = (s + 1)m = (s + 1)n/s,

|T |
|F|
≥ s

s + 1
· k · n− s

n
≈
(

1− 1

lg n

)
blg n− lg lg nc

(
1− lg n

n

)
∼ lg n. �

One can also seek higher-dimensional generalizations involving overlaps in the family of
rectangles [a, b]× [c, d] with 1 ≤ a ≤ b ≤ n and 1 ≤ c ≤ d ≤ n.
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