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Abstract

We study an ordered version of hypergraph Ramsey numbers using linearly ordered
vertex sets, due to Fox, Pach, Sudakov, and Suk. In the k-uniform ordered path, the
edges are the sets of k consecutive vertices in a linear vertex order. Moshkovitz and
Shapira described its ordered Ramsey number as the solution to an enumeration prob-
lem involving higher-order mulidimensional integer partitions. We give a short proof of
an equivalent result: the Ramsey number is 1 plus the number of elements in the poset
obtained by starting with a certain disjoint union of chains and repeatedly taking the
poset of down-sets, k− 1 times. We apply the resulting bounds to study the minimum
number of interval graphs whose union is the line graph of the n-vertex complete graph,
proving the conjecture of Heldt, Knauer, and Ueckerdt that this number grows with
n. In fact, the growth rate is between Ω( log logn

log log logn) and O(log log n).

1 Introduction

We study an ordered version of Ramsey numbers for hypergraphs. An ordered hypergraph
is a hypergraph on a linearly ordered vertex set. An ordered hypergraph H occurs as a
subhypergraph of an ordered hypergraph H ′ if some order-preserving injection from V (H)
to V (H ′) also preserves edges. We then say that H ′ contains (a copy of) H . Two ordered
hypergraphs are isomorphic if each is a subhypergraph of the other.

Ramsey’s Theorem concerns edge-colorings of ordinary (unordered) hypergraphs. Let
Kk

r denote the complete k-uniform hypergraph with r vertices. For t, k, r ∈ N, Ramsey’s
Theorem [18] implies that when n is sufficiently large, every t-coloring of E(Kk

n) contains a
monochromatic copy of Kk

r (and hence also of every subhypergraph of Kk
r ). Because any

complete ordered hypergraphs with the same number of vertices are isomorphic, the same
statement holds in the ordered sense, including the part about subhypergraphs. This permits
an ordered version of Ramsey numbers.
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Definition 1.1. LetH1, . . . , Ht be ordered k-uniform hypergraphs, where k ≥ 2. The t-color
ordered Ramsey number OR(H1, . . . , Ht) is the least integer n such that in every t-coloring
of the edges of the ordered hypergraph Kk

n there is a copy of Hi in color i for some i. When
H1 = · · · = Ht = H , we abbreviate the notation to ORt(H); this is the diagonal case.
For a k-uniform ordered hypergraph H , an edge-coloring of the ordered hypergraph Kk

n is
H-avoiding if it has no monochromatic H . The k-uniform ordered path P k

r is the ordered
hypergraph with r vertices in which the edges are the intervals of k consecutive vertices in
the vertex ordering. Let m be the number of edges in P k

r , so m = r − k + 1.

Note that ORt(K
k
p ) equals the classical t-color (unordered) Ramsey number for Kk

p .
Although OR(H1, . . . , Ht) is defined for general ordered k-uniform hypergraphs H1, . . . , Ht,
the problem is particularly fundamental for ordered paths, because this case has applications
(see [8]) and because this case reduces to computing the size of a natural poset. (Choudum
and Ponnusamy [3] used the term “ordered Ramsey number” for a different concept involving
directed graphs in colored tournaments.)

Focusing on ordered paths, Fox, Pach, Sudakov, and Suk [8] defined Nk(t,m) to be
the least integer N such that in every t-coloring of the k-subsets of N linearly ordered
elements there is a monochromatic k-uniform ordered path with m edges (that is, Nk(t,m) =
ORt(P

k
m+k−1) in our notation). They proved 2(m/t)t−1 ≤ N3(t,m) ≤ 2m

t−1 lgm.
Eliáš and Matoušek [6] asked more generally for the growth rate of Nk(t,m). Moshkovitz

and Shapira [17] answered with upper and lower bounds that are towers of the same height.
For a nonnegative integer h, define towh(x) by

towh(x) =

{

2towh−1(x) h ≥ 1

x h = 0
.

The subscript in our towh(x) is the number of 2s in the tower; thus tow1(x) is exponential
in x and tow2(x) is “doubly-exponential” in x. In our notation, their bounds are as follows:

Theorem 1.2 (Moshkovitz and Shapira [17]). For t ≥ 2, k ≥ 3, and m = r − k + 1 ≥ 2,

towk−2(m
t−1/2

√
t) ≤ ORt(P

k
r ) ≤ towk−2(2m

t−1).

For k = 3 they gave a sharper lower bound, yielding 2
2
3
mt−1/

√
t ≤ ORt(P

3
r ) ≤ 22m

t−1
.

Their bounds arose from their characterization of ORt(P
k
r ) using an enumerative problem.

We give an equivalent characterization via a shorter and more direct proof. In order to state
the result, we need some poset terminology. We view a partially ordered set or poset as a
set equipped with an order relation.

Let Q be a poset. A chain in Q is a set of pairwise comparable elements, and an antichain
is a set of pairwise incomparable elements. A down-set in Q a set S ⊆ Q such that if y ∈ S
and x ≤ y, then x ∈ S. Let |Q| denote the number of elements in Q. It is traditional to
use J(Q) to denote the containment poset on the set of down-sets of Q. Let Jk(Q) denote
the poset obtained from Q by repeatedly taking the poset of down-sets, k times. That is,
J0(Q) = Q and Jk(Q) = J(Jk−1(Q)) for k ≥ 1.
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We phrase the enumerative statement for the general (non-diagonal) case because it is
no more difficult than that of identical ordered paths. Moshkovitz and Shapira [17] stated
essentially the same result in different language for the diagonal case, commenting that their
argument extends to the general case. Hence it is proper to view this as their result, with a
new proof here.

Theorem 1.3. Given k ∈ N, let r1, . . . , rt be positive integers greater than k. Let mi =
ri − k+1 (thus mi = |E(P k

ri
)|) and let Q be the poset consisting of disjoint chains with sizes

m1−1, . . . , mt−1. The ordered Ramsey number satisfies ORt(P
k
r1
, . . . , P k

rt) = |Jk−1(Q)|+1.

A down-set in this poset Q is formed by taking some nonnegative number of elements
from the bottom of each chain in Q; hence J(Q) is the product of chains of sizes m1, . . . , mt.
When t = 2, a down-set in J(Q) can be viewed as an integer partition. For general t and k,
Moshkovitz and Shapira discussed the problem using higher-dimensional “line partitions”,
where line partitions are higher-order analogues of integer partitions. They employed bijec-
tions to lattices of down-sets of appropriate posets. Nevertheless, the result is easier to state
and prove directly in terms of down-sets as given above. The inductive nature of Jk−1(Q)
yields recurrences for upper and lower bounds on ORt(P

k
r ) as immediate corollaries, which

in turn yield the bounds in [17].
The resulting lower bound on ORt(P

k
r ) applies to the problem that motivated our study.

In Section 3, we prove a conjecture of Heldt, Knauer, and Ueckerdt [12] about geometric
representations of graphs. A t-interval representation of a graph G assigns each vertex the
union of at most t intervals on the real line so that vertices are adjacent if and only if their
assigned sets intersect. The interval number i(G) is the least t such that G has a t-interval
representation. When i(G) = 1, we say that G is an interval graph and that the assignment
of intervals is an interval representation.

A t-track representation of G is an expression of G as the union of t interval graphs.
The track number τ(G) (apparently introduced in [11]) is the least t such that G has a
t-track representation. Note that a t-track representation yields a t-interval representation
by placing interval representations of the t tracks in disjoint segments of the real line; thus
i(G) ≤ τ(G). (Note that τ(G) is at most the number of caterpillars needed to decompose
G; see also [9, 10, 11, 13, 16].)

When i(G) = 1, also τ(G) = 1, since such graphs are interval graphs. On the other hand,
i(K5,3) = 2 < τ(K5,3). Heldt, Knauer, and Ueckerdt [12] conjectured that the track number
is not bounded by any function of the interval number, even when restricted to line graphs.
Letting L(G) denote the line graph of a graph G, always i(L(G)) ≤ 2, since each edge of G
is incident to two vertices, and the edges incident to a common vertex can be given intervals
having a common point. Since track representations are hereditary over induced subgraphs,
the track number is unbounded for line graphs if and only if it is unbounded for L(Kn).

To study τ(L(Kn)), we relate t-color ordered Ramsey numbers of particular 3-uniform
ordered hypergraphs to t-track representations of L(Kn). Letting t be the track number of
L(Kn), we prove

ORt−3(P
3
4 ) ≤ n < ORt(P

′) ≤ ORt(K
3
6),
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where P ′ is obtained from P 3
6 by adding the two edges {1, 2, 5} and {2, 5, 6}. By inverting

the relationship between t and n, we obtain

Ω

(

lg lg n

lg lg lgn

)

≤ τ(L(Kn)) ≤ O(lg lg n).

2 Ordered Ramsey Numbers for k-Uniform Paths

Let [r] = {1, . . . , r}. We will use [r] as the vertex set of P k
r , so the r − k + 1 edges are the

sets of k consecutive elements of [r]. Note that P 2
r is the ordinary r-vertex path with vertices

indexed in order. To clarify the role of the vertex ordering, consider instead the 3-vertex
path with edges {1, 2} and {1, 3}. Avoiding the target when t-coloring E(Kn) requires the
edges leaving vertex 1 to have distinct colors, so n − 1 ≤ t. Coloring edges by their higher
endpoint achieves the bound, so the ordered Ramsey number equals t+2. For the monotone
path P 2

3 , Theorem 1.3 with r1 = · · · = rt = 3 and k = 2 yields the much higher value 2t + 1.
For k = 2 in general, Theorem 1.3 states ORt(P

2
m1+1, . . . , P

2
mt+1) = 1+

∏t
i=1mi. This case

is special enough that it also arose in the tournament model of Choudum and Ponnusamy [3]
(stated without proof). It is a general form of the Erdős–Szekeres Theorem, as observed by
Seidenberg [19] and by Moshkovitz and Shapira [17]. Its proof provides motivation for the
general argument. To show the upper bound, let E(Kn) be t-colored with no increasing
Pri+1 in color i, and compute for x ∈ [n] the t-tuple of orders of longest paths reaching x in
the various colors; only

∏t
i=1 ri such t-tuples are available. To achieve equality, view [n] as

∏t
i=1[ri] and let the color of an edge be the first index where the endpoints differ.
In the proof of the general upper bound, we will need the smallest down-set containing a

given set of elements in a poset Q. For S ⊆ Q, the down-set generated by S, denoted D(S),
is {u ∈ Q : u ≤ v for some v ∈ S}. We restate Theorem 1.3 in a slightly different way to
simplify notation in the proof.

Theorem 2.1. Given k ∈ N, let r1, . . . , rt be positive integers greater than k. Let Q be
the poset consisting of disjoint chains with sizes r1 − k, . . . , rt − k. Letting Q1 = Q and
Qi = J(Qi−1) for i > 1, the ordered Ramsey number satisfies ORt(P

k
r1 , . . . , P

k
rt) = |Qk|+ 1.

Proof. The case k = 1 is just the pigeonhole principle; consider k ≥ 2.

Lower Bound. For n = |Qk|, we will construct a t-edge-coloring of Kk
n that avoids P k

ri

in color i for each i. First consider x, y ∈ Qj , where 2 ≤ j ≤ k. If x 6≥ y, then x does not
contain y when they are viewed as down-sets in Qj−1; let f(x, y) be a particular element of
the set y − x in Qj−1. For x, y, z ∈ Qj , if x 6≥ y and y 6≥ z, then y (in Qj−1) contains f(x, y)
but not f(y, z). Since y is a down-set in Qj−1, we obtain f(x, y) 6≥ f(y, z) in Qj−1.

A list x1, . . . , xs in a poset is descent-free if xi 6≥ xi+1 for 1 ≤ i ≤ s − 1. We extend f
to descent-free lists in Qj by setting f(x1, . . . , xs) = (f(x1, x2), . . . , f(xs−1, xs)). The image
of a descent-free s-list in Qj is a descent-free (s − 1)-list in Qj−1. Let f 0 be the identity
map. For a descent-free s-list x1, . . . , xs in Qj , where s, j > d > 1, define f d(x1, . . . , xs) =
f(f d−1(x1, . . . , xs)). When defined, f d(x1, . . . , xs) is a descent-free (s− d)-list in Qj−d.
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Now let y1, . . . , yn be a linear extension of Qk; that is, an ordering of Qk such that yi ≤ yj
implies i ≤ j. Each sublist of a linear extension is descent-free. Also, for sublist x1, . . . , xk,
note that fk−1(x1, . . . , xk) is a single element in Q. Color {x1, . . . , xk} (as an edge in Kk

n)
with the index of the chain in Q that contains fk−1(x1, . . . , xk). If x1, . . . , xs is a sublist of
y1, . . . , yn whose consecutive k-lists all have color i, then fk−1(x1, . . . , xs) is a descent-free
(s− k + 1)-list in the ith chain of Q. A descent-free list in a chain is strictly increasing, so
s− k + 1 ≤ ri − k. Thus s < ri, and hence the coloring avoids P k

ri
in color i for each i.

Upper bound. Given a t-edge-coloring φ of E(Kk
n) with vertex set [n] that avoids P k

ri
in

color i for each i, it suffices to define an injection from [n] to Qk. View each vertex subset
Y ⊆ [n] as an increasing list, with Y − = Y −maxY and Y + = Y −minY .

For 1 ≤ j ≤ k < n, we construct gj :
(

[n]
j

)

→ Qk−j+1 such that

gj(Y
−) 6≥ gj(Y

+) in Qk−j+1 when Y ∈
(

[n]
j+1

)

. (∗)
This suffices, since g1 will then be the desired injection.

We first define gk. For X ∈
(

[n]
k

)

, let i = φ(X), and let w1, . . . , wri−k be the ith chain
in Q. Set gk(X) = wh, where h is the largest integer such that some i-colored copy of
P k
h+k−1 has last edge X . Note that h ≤ ri − k, since φ yields no i-colored copy of P k

ri
. If

φ(Y −) = φ(Y +) for some Y ∈
(

[n]
k+1

)

, then gk(Y
+) > gk(Y

−), and otherwise gk(Y
+) and

gk(Y
−) are incomparable in Q. In either case, gk(Y

−) 6≥ gk(Y
+).

Now consider smaller j, with gj+1 already defined and satisfying (∗). For X ∈
(

[n]
j

)

,

let gj(X) = D({gj+1(Y ) : Y + = X}). Since Qk−j+1 = J(Qk−j), by construction gj(X) ∈
Qk−j+1. Now consider Y ∈

(

[n]
j+1

)

; not gj+1(Y ) ∈ gj(Y
+). If also gj+1(Y ) ∈ gj(Y

−), then

since gj(Y
−) is a down-set there exists Z ∈

(

[n]
j+1

)

such that gj+1(Y ) ≤ gj+1(Z) in Qk−j and

Z+ = Y −. That is, gj+1(W
−) ≥ gj+1(W

+) for W = Y ∪ Z, which contradicts (∗) for gj+1.
Thus gj+1(Y ) ∈ gj(Y

+)− gj(Y
−), which yields gj(Y

−) 6≥ gj(Y
+).

With Q being the disjoint union of chains of sizes m1−1, . . . , mt−1, we have noted that
|Q1| =

∑

(mi − 1) and |Q2| =
∏

mi, since Q2 is the product of chains of sizes m1, . . . , mt.
For k ≥ 3, exact values are unknown. Since down-sets correspond bijectively to an-

tichains, |Q3| is the number of antichains in the chain-product. As noted by Moshkovitz
and Shapira, this is already a famous problem when all mi equal 2: counting the antichains
among subsets of [t] is known as Dedekind’s Problem. The family of all subsets of

(

[t]
⌊t/2⌋

)

yields the lower bound 2(
t

⌊t/2⌋); the family of all subsets of Q2 yields the upper bound 22
t
.

Not surprisingly, the lower bound is sharper: Kleitman and Markovsky [15] proved

(

t

⌊t/2⌋

)

≤ lg |Q3| ≤
(

t

⌊t/2⌋

)(

1 +O

(

log n

n

))

.

The upper bound was further refined by Korshunov [14]. Note that
(

t
⌊t/2⌋

)

≈ 2t/
√
2πt and

3 >
√
2π yield the lower bound on ORt(P

3
4 ) given by Moshkovitz and Shapira.

Asymptotics are also known for the size of the largest rank in Q2 when m1 = · · · = mt =
m > 2. As long as m ∈ o(et/

√
t), the size is asymptotic to mt−1/

√

πt/6 (see [2]). Since
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√

π/6 < 2, for t > logm+ 1
2
log logm this slightly improves the lower bound on ORt(P

3
m+2)

from Moshkovitz and Shapira [17] (stated in Theorem 1.2).
For larger k, we iterate the argument. Our point is that this is how the enumerative

characterization yields the bounds of [17]. Using the constant 2 instead of
√

π/6 allows in
Theorem 1.2 a uniform lower bound for all t without reference to the logarithmic term in
the argument to the tower function.

Corollary 2.2. Let Q be the disjoint union of t chains of size m− 1. Define Qk for k ≥ 1
as in Theorem 2.1. For k ≥ 3 and t > logm+ 1

2
log logm,

towk−2(m
t−1/

√

πt/6− O(t2)) ≤ |Qk| ≤ towk−2(m
t)

Proof. The upper bound arises from |Q2| = mt by iteratively taking all subsets.
For the lower bound, we define an analogue of the tower function using the middle

binomial coefficient. Let b0(x) = x. For h ≥ 1, let bh(x) =
(

bh−1(x)
⌊bh−1(x)/2⌋

)

. In terms of the tower

function, Stirling’s approximation yields bh(x) ≥ towh(x−O(lg x)).
Let ak be the maximum size of a family in Qk consisting of down-sets in Qk−1 that have

the same size; these sets form an antichain in Qk. Thus |Qk+1| ≥ 2ak , but also ak+1 ≥
(

ak
⌊ak/2⌋

)

.

Thus ak ≥ bk−2(a2). With a2 = mt−1/
√

πt/6, we have

|Qk| ≥ 2ak−1 ≥ 2bk−3(a2) ≥ towk−2(m
t−1/

√

πt/6− O(t2)).

Since we do not have an exact computation of |Jk−1(Q)|, recursive bounds may be of
interest. In an earlier version of this paper, methods like those of Theorem 2.1 were used to
give short proofs of several such bounds.

Theorem 2.3. For m = r − k + 1 and r > k ≥ 3, the following recursive bounds hold:

ORt(P
k
r+1) ≥ OR( t

⌊t/2⌋)
(P k−1

r ) ORt(P
k
k+1) ≤ OR2t(P

k−1
k )

ORt(P
k
r ) ≤ ORmt(P k−1

k ) ORt(P
k
k+2) ≤ OR22t(P

k−1
k ).

It would be interesting to obtain good bounds on other ordered Ramsey numbers. For
example, an ordered k-uniform version of a cycle can be defined by letting the edges of Ck

r

with vertex set [r] be all sets of k members of [r] whose congruence classes modulo r are
consecutive. Is ORt(C

k
r ) much larger than ORt(P

k
r )? Also, the ordinary Ramsey number of

a graph is bounded by the ordered Ramsey numbers of all its orderings. Given an unordered
graph, which vertex orderings lead to the smallest and largest ordered Ramsey numbers?
For steps in these directions, see Balko and Král [1]. Another paper studying special cases
of ordered Ramsey numbers for graphs (2-uniform hypergraphs) is [4].
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3 Separating Interval Number and Track Number

Recall from the introduction the definitions of t-interval representation, t-track representa-
tion, interval number i(G), and track number τ(G) for a graph G. We observed that always
i(G) ≤ τ(G). Heldt, Knauer, and Ueckerdt [12] conjectured that τ(G) can grow while
i(G) = 2 even for the line graphs of complete graphs. We prove this in the next theorem,
using ordered Ramsey numbers. First we pose a stronger conjecture:

Conjecture 3.1. For a sequence (Gn)
∞
n=1 of graphs, if χ(Gn) → ∞, then τ(L(Gn)) → ∞.

Theorem 3.2. Let P ′ be the ordered hypergraph obtained from the ordered P 3
6 with vertices

{1, . . . , 6} by adding the edges {1, 2, 5} and {2, 5, 6}. If n ≥ ORt(P
′), then τ(L(Kn)) > t.

Proof. From a t-track representation of L(Kn), we define a t-coloring φ of E(K3
n). For

x, y, z ∈ [n] with x < y < z, let φ(x, y, z) be the index of a track where the intervals for xy
and yz intersect. Since xy and yz are incident in Kn, φ is well-defined. The intervals for
disjoint pairs do not overlap in any track, since they are not adjacent in L(Kn).

Since n ≥ ORt(P
′), under φ there is a monochromatic ordered copy of P ′; let its vertices

be {x1, . . . , x6} in order, and let its edges have color s. The intervals for xixi+1 and xjxj+1

in track s overlap when |i− j| = 1, but not when |i− j| > 1. Hence we have a path of five
successively overlapping intervals. Since this copy of P ′ is monochromatic, the interval for
x2x5 must intersect the intervals for x1x2 and x5x6, but it must not intersect the interval for
x3x4 that lies between them. Hence these incidences cannot be represented in a single track,
and L(Kn) has no t-track representation.

For classical Ramsey numbers, Conlon, Fox, and Sudakov [5] proved Rt(K
3
6) ≤ 22

(4+o(1))t lg t
.

Corollary 3.3. τ(L(Kn)) ≥ lg lgn
(4+o(1)) lg lg lgn

.

Proof. We now have ORt(P
′) ≤ ORt(K

3
6 ) = Rt(K

3
6) ≤ 22

(4+o(1))t lg t
. If n is larger than this

bound, then n > ORt(P
′) and τ(L(Kn)) > t. To express the lower bound in terms of n, we

seek t such that n ≥ 22
(4+o(1))t lg t

, yielding the claimed bound.

To obtain an upper bound on τ(L(Kn)), we again use ordered Ramsey theory.

Theorem 3.4. If n < ORt(P
3
4 ), then τ(L(Kn)) ≤ t+ 2.

Proof. We convert a P 3
4 -avoiding t-coloring φ of E(K3

n) into a representation of L(Kn) with
t+ 2 tracks. If φ({x, y, z}) = i, where x < y < z, then call xy a left pair and yz a right pair
for color i. Since φ avoids P 3

4 , no pair xy is a left and right pair for the same color.
For xy ∈ E(Kn) with x < y, define the interval for xy in track i as follows, where ǫ = 1/3:

1. If xy is a left pair for i, then use the interval [y − ε, y + ε].
2. If xy is a right pair for i, then use the interval [x− ε, x+ ε].
3. If xy is not a left or right pair for i, then let the interval intersect no others.
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An edge in L(Kn) involves three vertices of Kn, say {x, y, z} with x < y < z. The
edge {xy, yz} is represented in the track whose index is φ({x, y, z}). The edge {xy, xz}
is represented in the “left track”, where each pair with lower endpoint x gets the interval
[x − ε, x + ε]. The edge {xz, yz} is represented in the “right track”, where each pair with
higher endpoint z gets the interval [z − ε, z + ε].

Corollary 3.3 and the lower bound on ORt(P
3
4 ) (Theorem 1.2) together yield the following:

Corollary 3.5. Ω( lg lgn
lg lg lgn

) ≤ τ(L(Kn)) ≤ O(lg lg n).

Improvement of the asymptotic upper bound on ORt(P
′) would lead to an improvement

of the asymptotic lower bound on τ(L(Kn)), the aim being to eliminate the denominator

in the lower bound. For Rt(K
3
6), the known upper bound is 22

(4+o(1))t lg t
, but the known

lower bound is only 22
ct
, so the improvement could happen there. Since P ′ is a proper

subhypergraph, improvement is possible without determining Rt(K
3
6 ). Since P ′ consists of

two 3-uniform ordered paths, P 3
6 and P 3

4 , whose first two vertices and last two vertices are
identified, finding stronger upper bounds on ORt(P

3
6 ) and ORt(P

3
4 ) may suffice.
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Erdős-Szekeres Theorem, preprint avaiable as arXiv:1206.4001.

[18] F. P. Ramsey, On a problem of formal logic, Proc. Lond. Math. Soc. 30 (1930), 264–286.

[19] A. Seidenberg, A simple proof of a theorem of Erdos and Szekeres, J. London Math. Soc. 34
(1959), 352.

9


	Introduction
	Ordered Ramsey Numbers for k-Uniform Paths
	Separating Interval Number and Track Number

