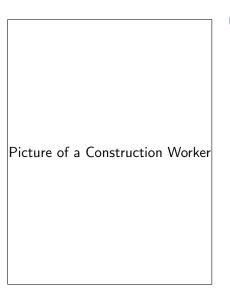
Online Degree Ramsey Theory

Kevin Milans (milans@uiuc.edu) Joint with J. Butterfield, T. Grauman, B. Kinnersley, C. Stocker, D. West

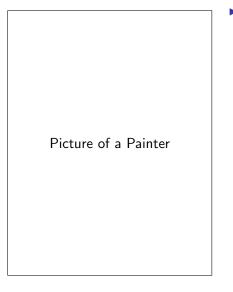
University of Illinois at Urbana-Champaign

AMS Sectional Meeting Bloomington, IN 5 April 2008

• Let's play a game:



- Let's play a game:
 - Builder vs.



- Let's play a game:
 - Builder vs.

Painter

- Let's play a game:
 - Builder vs.

Painter

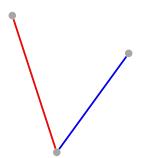
- Let's play a game:
 - Builder vs.
 - Painter
- Builder presents an edge

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

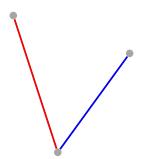
- Builder vs.
- Painter
- Builder presents an edge
- Painter colors the edge red or blue

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Let's play a game:
 - Builder vs.
 - Painter
- Builder presents an edge
- Painter colors the edge red or blue



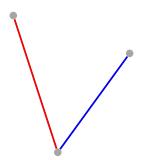
- Let's play a game:
 - Builder vs.
 - Painter
- Builder presents an edge
- Painter colors the edge red or blue



- Let's play a game:
 - Builder vs.
 - Painter
- Builder presents an edge
- Painter colors the edge red or blue

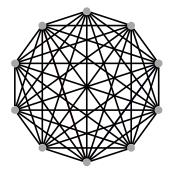
▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 Builder wants to make a monochromatic copy of G (e.g. G = K₄)



- Let's play a game:
 - Builder vs.
 - Painter
- Builder presents an edge
- Painter colors the edge red or blue

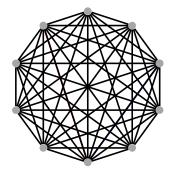
- Builder wants to make a monochromatic copy of G (e.g. G = K₄)
- Painter tries to stop Builder



 $\langle Builder \rangle$: Aha! Your move!

- Let's play a game:
 - Builder vs.
 - Painter
- Builder presents an edge
- Painter colors the edge red or blue

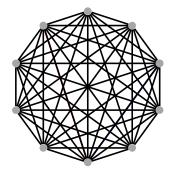
- Builder wants to make a monochromatic copy of G (e.g. G = K₄)
- Painter tries to stop Builder



 $\langle Painter \rangle$: Not fair!

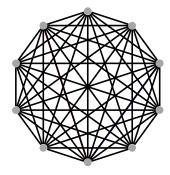
- Let's play a game:
 - Builder vs.
 - Painter
- Builder presents an edge
- Painter colors the edge red or blue

- Builder wants to make a monochromatic copy of G (e.g. G = K₄)
- Painter tries to stop Builder



 $\langle Painter \rangle$: Not fair!

- Let's play a game:
 - Builder vs.
 - Painter
- Builder presents an edge
- Painter colors the edge red or blue
- Builder wants to make a monochromatic copy of G (e.g. G = K₄)
- Painter tries to stop Builder
- Presented graph must belong to H
 (e.g. H = planar graphs)



 $\langle Painter \rangle$: Not fair!

- Let's play a game:
 - Builder vs.
 - Painter
- Builder presents an edge
- Painter colors the edge red or blue
- Builder wants to make a monochromatic copy of G (e.g. G = K₄)
- Painter tries to stop Builder
- Presented graph must belong to H
 (e.g. H = planar graphs)
- This defines the game (G, \mathcal{H})

Proposition (Grytczuk, Hałuszczak, Kierstead (2004)) If G is a forest, then Builder wins (G, forests).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition (Grytczuk, Hałuszczak, Kierstead (2004)) If G is a forest, then Builder wins (G, forests).

Theorem (GHK)

If $\chi(G) \leq k$, then Builder wins (G, k-colorable graphs).

Proposition (Grytczuk, Hałuszczak, Kierstead (2004)) If G is a forest, then Builder wins (G, forests).

Theorem (GHK) If $\chi(G) \leq k$, then Builder wins (G, k-colorable graphs).

Theorem (GHK)

Proposition (Grytczuk, Hałuszczak, Kierstead (2004)) If G is a forest, then Builder wins (G, forests).

Theorem (GHK) If $\chi(G) \leq k$, then Builder wins (G, k-colorable graphs). Theorem (GHK)

1. If G is a cycle, Builder wins (G, planar graphs).

Proposition (Grytczuk, Hałuszczak, Kierstead (2004)) If G is a forest, then Builder wins (G, forests).

Theorem (GHK) If $\chi(G) \leq k$, then Builder wins (G, k-colorable graphs). Theorem (GHK)

If G is a cycle, Builder wins (G, planar graphs).
 If G = C₃, then Painter wins (G, outerplanar graphs).

Proposition (Grytczuk, Hałuszczak, Kierstead (2004)) If G is a forest, then Builder wins (G, forests).

Theorem (GHK) If $\chi(G) \leq k$, then Builder wins (G, k-colorable graphs). Theorem (GHK)

If G is a cycle, Builder wins (G, planar graphs).
 If G = C₃, then Painter wins (G, outerplanar graphs).

Proposition (Grytczuk, Hałuszczak, Kierstead (2004)) If G is a forest, then Builder wins (G, forests).

Theorem (GHK) If $\chi(G) \leq k$, then Builder wins (G, k-colorable graphs). Theorem (GHK)

1. If G is a cycle, Builder wins (G, planar graphs).

2. If $G = C_3$, then Painter wins (G, outerplanar graphs).

3. If $G = K_4 - e$, Builder wins (G, planar graphs).

Proposition (Grytczuk, Hałuszczak, Kierstead (2004)) If G is a forest, then Builder wins (G, forests).

Theorem (GHK) If $\chi(G) \leq k$, then Builder wins (G, k-colorable graphs). Theorem (GHK)

1. If G is a cycle, Builder wins (G, planar graphs).

2. If $G = C_3$, then Painter wins (G, outerplanar graphs).

3. If $G = K_4 - e$, Builder wins (G, planar graphs).

Conjecture (GHK) Builder wins (G, planar graphs) if and only if G is outerplanar.

Online Degree Ramsey Number

Definition

• Let
$$\mathcal{S}_k = \{H : \Delta(H) \leq k\}.$$

Online Degree Ramsey Number

Definition

- Let $\mathcal{S}_k = \{H : \Delta(H) \leq k\}.$
- ► For each graph *G*, define the online degree-Ramsey number as follows:

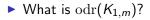
$$odr(G) = min\{k : Builder wins (G, S_k)\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $odr(G) = min\{k : Builder wins (G, S_k)\}$

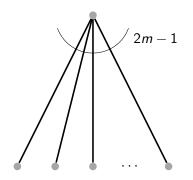
• What is $odr(K_{1,m})$?

$$odr(G) = min\{k : Builder wins (G, S_k)\}$$

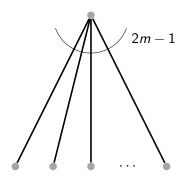


▶
$$odr(K_{1,m}) \leq 2m - 1$$

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○



 $odr(G) = min\{k : Builder wins (G, S_k)\}$



- What is $odr(K_{1,m})$?
- ▶ $odr(K_{1,m}) \leq 2m 1$
- Claim: $odr(K_{1,m}) = m$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

 $odr(G) = min\{k : Builder wins (G, S_k)\}$

- What is $odr(K_{1,m})$?
- ▶ $odr(K_{1,m}) \leq 2m 1$
- Claim: $odr(K_{1,m}) = m$.

• Inductively force $K_{1,m-1}$

 $odr(G) = min\{k : Builder wins (G, S_k)\}$

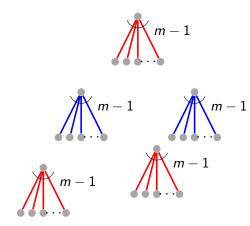
• What is $odr(K_{1,m})$?

•
$$\operatorname{odr}(K_{1,m}) \leq 2m - 1$$

• Claim: $odr(K_{1,m}) = m$.

• Inductively force $K_{1,m-1}$

 $odr(G) = min\{k : Builder wins (G, S_k)\}$



- What is $odr(K_{1,m})$?
- ▶ $odr(K_{1,m}) \leq 2m 1$
- Claim: $odr(K_{1,m}) = m$.
- Inductively force $K_{1,m-1}$

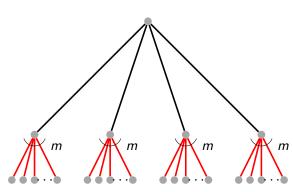
 $odr(G) = min\{k : Builder wins (G, S_k)\}$

• What is $odr(K_{1,m})$?

•
$$\operatorname{odr}(K_{1,m}) \leq 2m - 1$$

- Claim: $odr(K_{1,m}) = m$.
- Inductively force $K_{1,m-1}$
- ► Take *m* copies of K_{1,m-1} in the same color

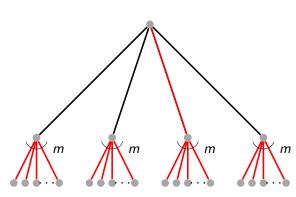
$$\boxed{m-1} \qquad m-1 \qquad m$$



- What is $odr(K_{1,m})$?
- $\operatorname{odr}(K_{1,m}) \leq 2m 1$
- Claim: $odr(K_{1,m}) = m$.
- ▶ Inductively force $K_{1,m-1}$
- ► Take *m* copies of K_{1,m-1} in the same color
- Present a new star

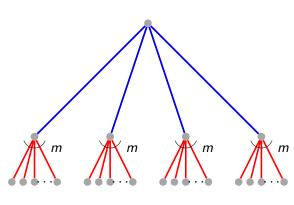
・ロト ・ 雪 ト ・ ヨ ト

-



- What is $odr(K_{1,m})$?
- $\operatorname{odr}(K_{1,m}) \leq 2m 1$
- Claim: $odr(K_{1,m}) = m$.
- Inductively force $K_{1,m-1}$
- ► Take *m* copies of K_{1,m-1} in the same color
- Present a new star
- If any edge is red: we have a red K_{1,m}

(日)、



- What is $odr(K_{1,m})$?
- $\operatorname{odr}(K_{1,m}) \leq 2m 1$
- Claim: $odr(K_{1,m}) = m$.
- ▶ Inductively force $K_{1,m-1}$
- ► Take *m* copies of K_{1,m-1} in the same color
- Present a new star
- If any edge is red: we have a red K_{1,m}

(日)、

All edges blue: we have a blue K_{1,m}

The Greedy Painter

Finding strategies for Painter is difficult.

(ロ)、(型)、(E)、(E)、 E) の(の)

Finding strategies for Painter is difficult.

Definition

The greedy \mathcal{F} -Painter colors edges red unless doing so would violate the invariant that the red subgraph lies in \mathcal{F} .

Finding strategies for Painter is difficult.

Definition

The greedy \mathcal{F} -Painter colors edges red unless doing so would violate the invariant that the red subgraph lies in \mathcal{F} .

Theorem

 $\operatorname{odr}(G) \ge (\Delta(G) - 1) + \max_{uv \in E(G)} \min\{d(u), d(v)\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finding strategies for Painter is difficult.

Definition

The greedy \mathcal{F} -Painter colors edges red unless doing so would violate the invariant that the red subgraph lies in \mathcal{F} .

Theorem

$$\operatorname{odr}(G) \ge (\Delta(G) - 1) + \max_{uv \in E(G)} \min\{d(u), d(v)\}$$

Proof. Let $m = \Delta(G)$. Use the greedy S_{m-1} -Painter.

Finding strategies for Painter is difficult.

Definition

The greedy \mathcal{F} -Painter colors edges red unless doing so would violate the invariant that the red subgraph lies in \mathcal{F} .

Theorem

$$\operatorname{odr}(G) \ge (\Delta(G) - 1) + \max_{uv \in E(G)} \min\{d(u), d(v)\}$$

Proof. Let $m = \Delta(G)$. Use the greedy S_{m-1} -Painter.

Painter never makes a red copy of G.

Finding strategies for Painter is difficult.

Definition

The greedy \mathcal{F} -Painter colors edges red unless doing so would violate the invariant that the red subgraph lies in \mathcal{F} .

Theorem

$$\operatorname{odr}(G) \ge (\Delta(G) - 1) + \max_{uv \in E(G)} \min\{d(u), d(v)\}$$

Proof.

Let $m = \Delta(G)$. Use the greedy S_{m-1} -Painter.

- Painter never makes a red copy of G.
- ▶ Whenever Painter colors an edge uv blue, either u or v is incident to at least m − 1 red edges.

Finding strategies for Painter is difficult.

Definition

The greedy \mathcal{F} -Painter colors edges red unless doing so would violate the invariant that the red subgraph lies in \mathcal{F} .

Theorem

$$\operatorname{odr}(G) \ge (\Delta(G) - 1) + \max_{uv \in E(G)} \min\{d(u), d(v)\}$$

Corollary

If G has two adjacent vertices of maximum degree, then $odr(G) \ge 2\Delta(G) - 1$.

Finding strategies for Painter is difficult.

Definition

The greedy \mathcal{F} -Painter colors edges red unless doing so would violate the invariant that the red subgraph lies in \mathcal{F} .

Theorem

$$\operatorname{odr}(G) \ge (\Delta(G) - 1) + \max_{uv \in E(G)} \min\{d(u), d(v)\}$$

Corollary

If G has two adjacent vertices of maximum degree, then $odr(G) \ge 2\Delta(G) - 1$.

Theorem If T is a tree, then $odr(T) \le 2\Delta(T) - 1$.

Graphs with $odr(G) \leq 3$

Theorem

For each graph G, we have $odr(G) \leq 3$ if and only if

- each component is a path, or
- each component is a subgraph of $K_{1,3}$.

Graphs with $odr(G) \leq 3$

Theorem

For each graph G, we have $odr(G) \leq 3$ if and only if

- each component is a path, or
- each component is a subgraph of $K_{1,3}$.

Proof (Sketch).

Sufficiency: strategies for Builder.

Graphs with $odr(G) \leq 3$

Theorem

For each graph G, we have $odr(G) \leq 3$ if and only if

- each component is a path, or
- each component is a subgraph of K_{1,3}.

Proof (Sketch).

- Sufficiency: strategies for Builder.
- ► Necessity: strategies for Painter. Both the greedy S₂-Painter and the greedy L-Painter are used, where L is the family of linear forests.

Definition

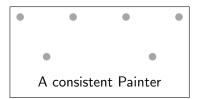
A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

Example



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

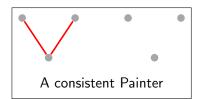
Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

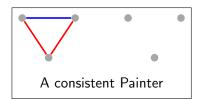
Example



Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

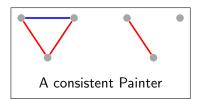
Example



Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

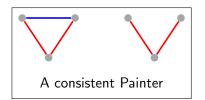
Example



Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

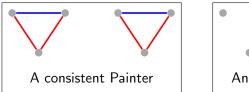
Example



Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

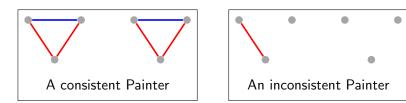
Example



Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

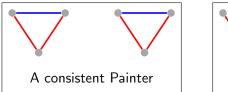
Example



Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

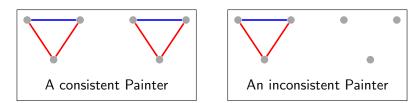
Example



Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

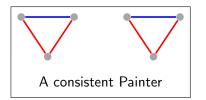
Example

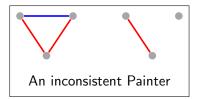


Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

Example

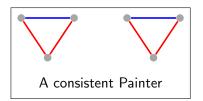


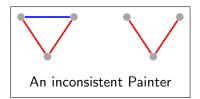


Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

Example

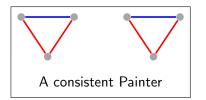


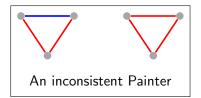


Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

Example





Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

Theorem (Consistent Painter)

Let \mathcal{H}_0 be a family of connected graphs and let \mathcal{H} be the family of graphs that are disjoint unions of members of \mathcal{H}_0 . If \mathcal{A} is a Painter strategy that edge-colors graphs in \mathcal{H} , then there

exists a consistent Painter strategy \mathcal{A}' that edge-colors graphs in \mathcal{H} such that every edge-colored component produced by \mathcal{A}' is also produced by \mathcal{A} .

Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

Theorem (Consistent Painter)

Let \mathcal{H}_0 be a family of connected graphs and let \mathcal{H} be the family of graphs that are disjoint unions of members of \mathcal{H}_0 . If \mathcal{A} is a Painter strategy that edge-colors graphs in \mathcal{H} , then there exists a consistent Painter strategy \mathcal{A}' that edge-colors graphs in \mathcal{H} such that every edge-colored component produced by \mathcal{A}' is also produced by \mathcal{A} .

• Consistent Painter applies to $\mathcal{H} = \mathcal{S}_k$.

Definition

A Painter strategy is consistent if the color assigned to uv depends only on the edge-coloring of the components of u and v.

Theorem (Consistent Painter)

Let \mathcal{H}_0 be a family of connected graphs and let \mathcal{H} be the family of graphs that are disjoint unions of members of \mathcal{H}_0 . If \mathcal{A} is a Painter strategy that edge-colors graphs in \mathcal{H} , then there

exists a consistent Painter strategy A' that edge-colors graphs in \mathcal{H} such that every edge-colored component produced by A' is also produced by A.

- Consistent Painter applies to $\mathcal{H} = \mathcal{S}_k$.
- ▶ When proving upper bounds on odr(G), it suffices to consider a consistent Painter.

Theorem

Let T be a tree with a single vertex r of maximum degree. If d(r) = a and $d(u) \le b$ for each $u \ne r$, then $odr(T) \le a + b - 1$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Theorem

Let T be a tree with a single vertex r of maximum degree. If d(r) = a and $d(u) \le b$ for each $u \ne r$, then $odr(T) \le a + b - 1$.

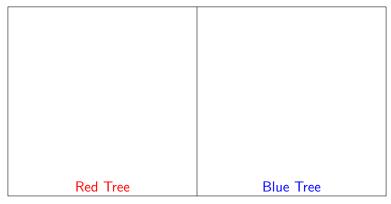
▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Corollary

If T is a tree, then $odr(T) \leq 2\Delta(T) - 1$.

Theorem

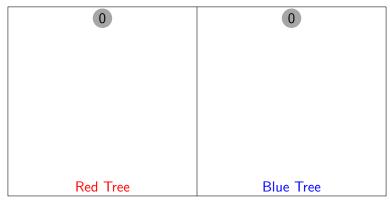
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1=6$.



Build a red tree and a blue tree in parallel.

Theorem

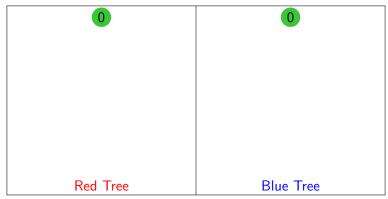
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



- Build a red tree and a blue tree in parallel.
- Both trees start with fresh vertices to serve as *r*.

Theorem

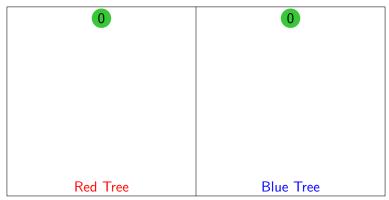
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



- Each tree has an active vertex.
- Builder presents edges between an active vertex and fresh vertices.

Theorem

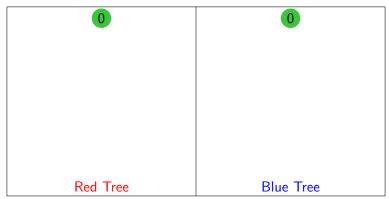
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



A tree is *dangerous* when its active vertex has too many (i.e. *b*−1 = 2) children in the "wrong" color.

Theorem

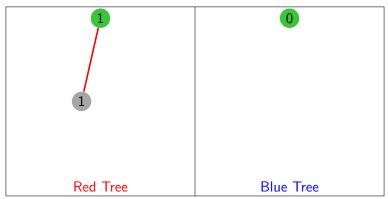
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



 Present edges until an active vertex is finished or both trees are dangerous.

Theorem

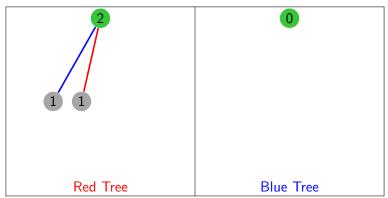
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



 Present edges until an active vertex is finished or both trees are dangerous.

Theorem

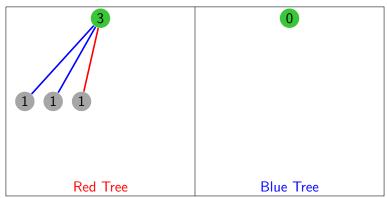
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



 Present edges until an active vertex is finished or both trees are dangerous.

Theorem

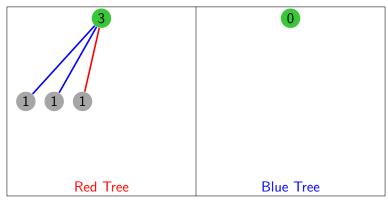
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



 Present edges until an active vertex is finished or both trees are dangerous.

Theorem

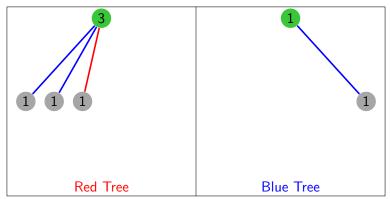
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem

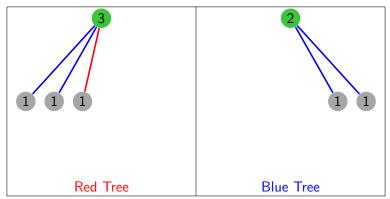
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem

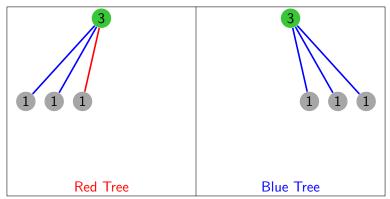
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem

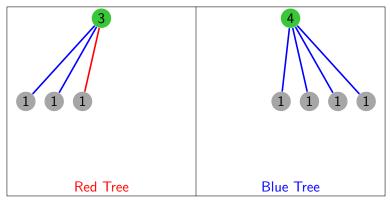
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem

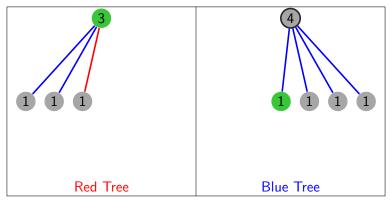
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem

Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.

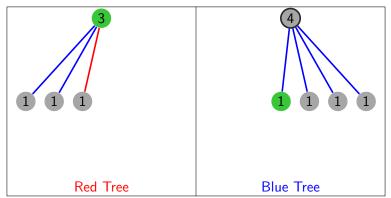


- ► The red tree is dangerous. Add edges to blue tree.
- ► The blue active vertex is finished. Move the blue active vertex.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

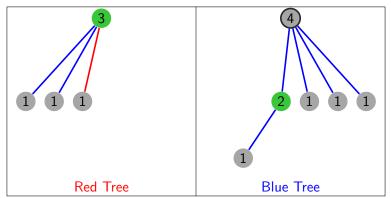
Theorem

Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



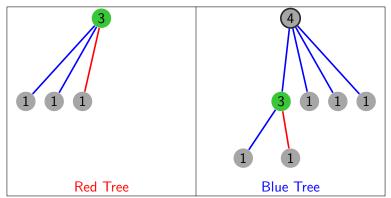
Theorem

Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



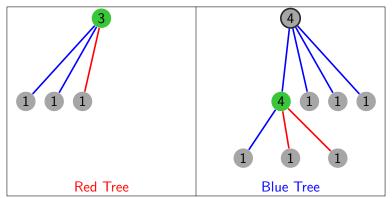
Theorem

Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



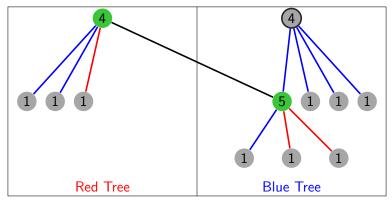
Theorem

Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



Theorem

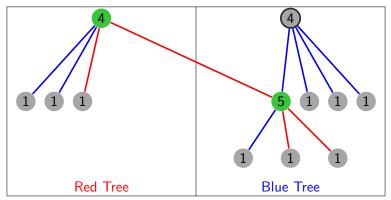
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1=6$.



▶ Both trees dangerous: present edge between active vertices.

Theorem

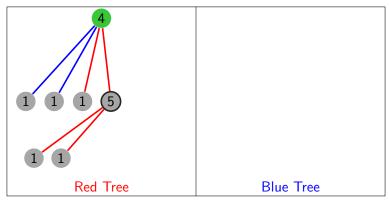
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1=6$.



- ▶ Both trees dangerous: present edge between active vertices.
- Edge colored red, so blue tree's active vertex and red children move to red tree.

Theorem

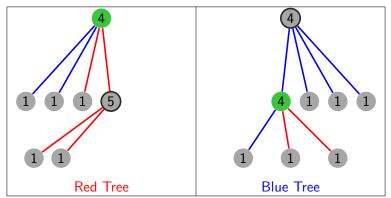
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



- Both trees dangerous: present edge between active vertices.
- Edge colored red, so blue tree's active vertex and red children move to red tree.

Theorem

Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.

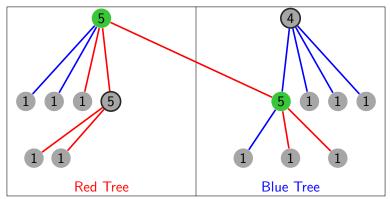


▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Use Consistent Painter to regenerate blue tree.

Theorem

Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1=6$.

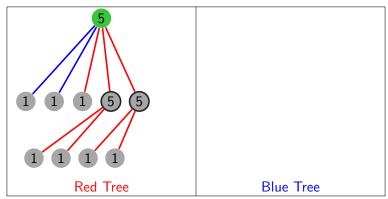


▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

▶ Both trees dangerous: present edge between active vertices.

Theorem

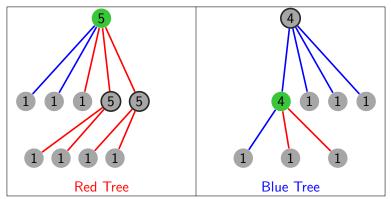
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1=6$.



- Both trees dangerous: present edge between active vertices.
- ► Move blue tree's active vertex and red children to red tree.

Theorem

Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.

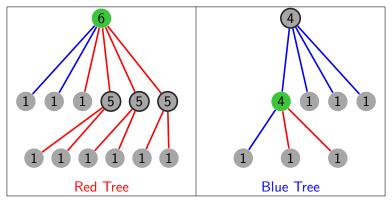


▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Use Consistent Painter to regenerate blue tree.

Theorem

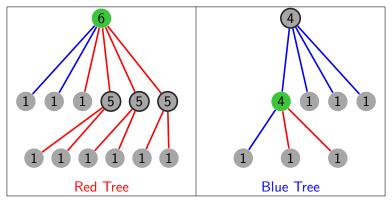
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1=6$.



- Use Consistent Painter to regenerate blue tree.
- And once more.

Theorem

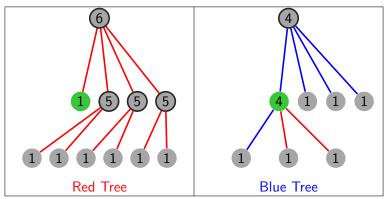
Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1=6$.



- Edge between active vertices only when both trees are dangerous.
- A tree inherits only finished vertices and leaves from the other.

Theorem

Let T be a tree with a single vertex r of maximum degree. If d(r) = 4 and $d(u) \le 3$ for each $u \ne r$, then $odr(T) \le 4+3-1 = 6$.



- Edge between active vertices only when both trees are dangerous.
- A tree inherits only finished vertices and leaves from the other.
- Active vertex moves from a finished vertex to a leaf closest to root.

Theorem For each cycle C_n , we have $4 \le odr(C_n) \le 5$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem For each cycle C_n , we have $4 \le odr(C_n) \le 5$.

▶ For all but finitely many cycles C_n , we have $odr(C_n) = 4$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

For each cycle C_n , we have $4 \leq odr(C_n) \leq 5$.

• For all but finitely many cycles C_n , we have $odr(C_n) = 4$.

• First step: if *n* is even, then $odr(C_n) = 4$.

Theorem

For each cycle C_n , we have $4 \leq odr(C_n) \leq 5$.

▶ For all but finitely many cycles C_n , we have $odr(C_n) = 4$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• First step: if *n* is even, then $odr(C_n) = 4$.

Proof (idea).

• Lower bound: characterization of $odr(G) \leq 3$.

Theorem

For each cycle C_n , we have $4 \leq odr(C_n) \leq 5$.

For all but finitely many cycles C_n , we have $odr(C_n) = 4$.

• First step: if *n* is even, then $odr(C_n) = 4$.

Proof (idea).

- Lower bound: characterization of $odr(G) \leq 3$.
- Upper bound: explicit Builder strategies.

Theorem

For each cycle C_n , we have $4 \leq odr(C_n) \leq 5$.

For all but finitely many cycles C_n , we have $odr(C_n) = 4$.

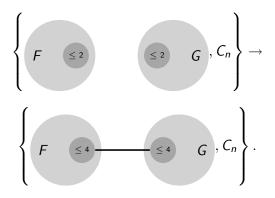
• First step: if *n* is even, then $odr(C_n) = 4$.

Proof (idea).

- Lower bound: characterization of $odr(G) \leq 3$.
- Upper bound: explicit Builder strategies.

Even Cycles

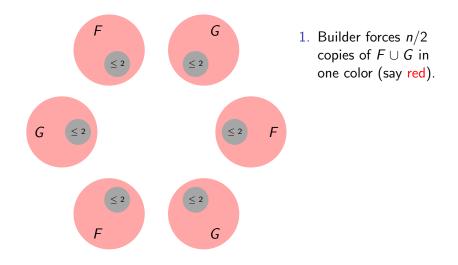
Lemma (Union Lemma) If n is even, then in S_4 , we have



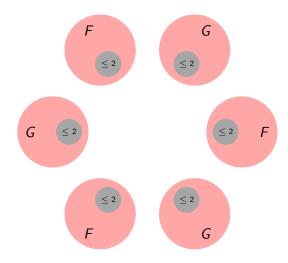
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

1. Builder forces n/2copies of $F \cup G$ in one color (say red).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

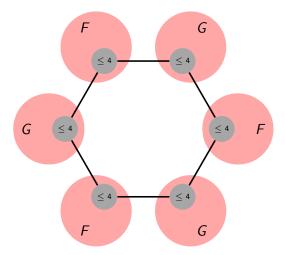


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ◆○へ⊙



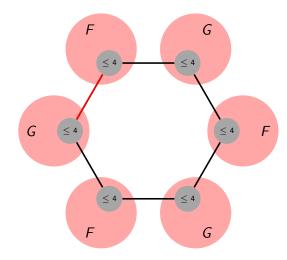
- 1. Builder forces n/2copies of $F \cup G$ in one color (say red).
- 2. Builder presents a cycle through specified vertices.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□



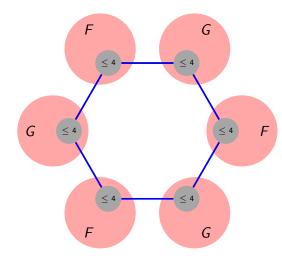
- 1. Builder forces n/2copies of $F \cup G$ in one color (say red).
- 2. Builder presents a cycle through specified vertices.

◆□> ◆□> ◆豆> ◆豆> □豆



- 1. Builder forces n/2copies of $F \cup G$ in one color (say red).
- 2. Builder presents a cycle through specified vertices.
- 3. If some edge is red, we have $F \cup G$ in red.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ



- 1. Builder forces n/2copies of $F \cup G$ in one color (say red).
- 2. Builder presents a cycle through specified vertices.
- 3. If some edge is red, we have $F \cup G$ in red.
- 4. If all edges are blue, we have C_n in blue.

(日)、(四)、(E)、(E)、(E)

Odd Cycles

 The Union Lemma does not help when Builder wants to force odd cycles.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Odd Cycles

- The Union Lemma does not help when Builder wants to force odd cycles.
- Nevertheless, weaker variants are possible that help when n is odd.

Theorem

If n is even, n = 3, $337 \le n \le 514$, or $n \ge 689$, then $odr(C_n) = 4$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. Characterize when $odr(G) \leq 4$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- 1. Characterize when $odr(G) \leq 4$.
- 2. What is $odr(C_n)$ when $n \ge 5$ is small and odd? (We know $odr(C_n) \in \{4, 5\}$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. Characterize when $odr(G) \leq 4$.
- 2. What is $odr(C_n)$ when $n \ge 5$ is small and odd? (We know $odr(C_n) \in \{4, 5\}$).

3. In particular, what is $odr(C_5)$?

- 1. Characterize when $odr(G) \leq 4$.
- 2. What is $odr(C_n)$ when $n \ge 5$ is small and odd? (We know $odr(C_n) \in \{4, 5\}$).

- 3. In particular, what is $odr(C_5)$?
- 4. Is it true that $odr(G) \leq f(\Delta(G))$ for some function f?

- 1. Characterize when $odr(G) \leq 4$.
- 2. What is $odr(C_n)$ when $n \ge 5$ is small and odd? (We know $odr(C_n) \in \{4, 5\}$).
- 3. In particular, what is $odr(C_5)$?
- Is it true that odr(G) ≤ f(Δ(G)) for some function f?
 4.1 Yes for trees: odr(T) ≤ 2Δ(T) − 1.

- 1. Characterize when $odr(G) \leq 4$.
- 2. What is $odr(C_n)$ when $n \ge 5$ is small and odd? (We know $odr(C_n) \in \{4, 5\}$).

- 3. In particular, what is $odr(C_5)$?
- 4. Is it true that $odr(G) \leq f(\Delta(G))$ for some function f?
 - 4.1 Yes for trees: $odr(T) \leq 2\Delta(T) 1$.
 - 4.2 Yes for $\Delta(G) \leq 2$.

- 1. Characterize when $odr(G) \leq 4$.
- 2. What is $odr(C_n)$ when $n \ge 5$ is small and odd? (We know $odr(C_n) \in \{4, 5\}$).

- 3. In particular, what is $odr(C_5)$?
- 4. Is it true that $odr(G) \leq f(\Delta(G))$ for some function f?
 - 4.1 Yes for trees: $odr(T) \leq 2\Delta(T) 1$.
 - 4.2 Yes for $\Delta(G) \leq 2$.
- 5. Develop more strategies for Painter.