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Online Ramsey Theory

I Let’s play a game:

I Builder vs.
I Painter

I Builder presents an edge

I Painter colors the edge red or blue

I Builder wants to make a
monochromatic copy of G (e.g.
G = K4)

I Painter tries to stop Builder

I Presented graph must belong to H
(e.g. H = planar graphs)

I This defines the game (G ,H)
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Previous Results

Proposition (Grytczuk, Ha luszczak, Kierstead (2004))
If G is a forest, then Builder wins (G , forests).

Theorem (GHK)
If χ(G ) ≤ k, then Builder wins (G , k-colorable graphs).

Theorem (GHK)

1. If G is a cycle, Builder wins (G , planar graphs).

2.3. If G = K4 − e, Builder wins (G , planar graphs).

Conjecture (GHK)
Builder wins (G ,planar graphs) if and only if G is outerplanar.
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I Claim: odr(K1,m) = m.
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in the same color

I Present a new star

I If any edge is red: we
have a red K1,m

I All edges blue: we have a
blue K1,m
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The Greedy Painter
Finding strategies for Painter is difficult.

Definition
The greedy F-Painter colors edges red unless doing so would
violate the invariant that the red subgraph lies in F .

Theorem

odr(G ) ≥ (∆(G )− 1) + max
uv∈E(G)

min{d(u), d(v)}
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Graphs with odr(G ) ≤ 3

Theorem
For each graph G, we have odr(G ) ≤ 3 if and only if

I each component is a path, or

I each component is a subgraph of K1,3.

Proof (Sketch).

I Sufficiency: strategies for Builder.

I Necessity: strategies for Painter. Both the greedy S2-Painter
and the greedy L-Painter are used, where L is the family of
linear forests.
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only on the edge-coloring of the components of u and v .
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The Consistent Painter

Definition
A Painter strategy is consistent if the color assigned to uv depends
only on the edge-coloring of the components of u and v .

Theorem (Consistent Painter)

Let H0 be a family of connected graphs and let H be the family of
graphs that are disjoint unions of members of H0.
If A is a Painter strategy that edge-colors graphs in H, then there
exists a consistent Painter strategy A′ that edge-colors graphs in
H such that every edge-colored component produced by A′ is also
produced by A.

I Consistent Painter applies to H = Sk .

I When proving upper bounds on odr(G ), it suffices to consider
a consistent Painter.
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only on the edge-coloring of the components of u and v .

Theorem (Consistent Painter)
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I When proving upper bounds on odr(G ), it suffices to consider
a consistent Painter.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = a and d(u) ≤ b for each u 6= r , then odr(T ) ≤ a + b− 1.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = a and d(u) ≤ b for each u 6= r , then odr(T ) ≤ a + b− 1.

Corollary

If T is a tree, then odr(T ) ≤ 2∆(T )− 1.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

I Build a red tree and a blue tree in parallel.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

0 0

I Build a red tree and a blue tree in parallel.

I Both trees start with fresh vertices to serve as r .



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

0 0

I Each tree has an active vertex.

I Builder presents edges between an active vertex and fresh vertices.

I Builder is happy if edges are colored “correctly”.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

0 0

I A tree is dangerous when its active vertex has too many (i.e. b−1 =
2) children in the “wrong” color.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

0 0

I Present edges until an active vertex is finished or both trees are
dangerous.
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Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

1 0

1

I Present edges until an active vertex is finished or both trees are
dangerous.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

2 0

11

I Present edges until an active vertex is finished or both trees are
dangerous.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

3 0

111

I Present edges until an active vertex is finished or both trees are
dangerous.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

3 0

111

I The red tree is dangerous. Add edges to blue tree.
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Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

3 1

111 1

I The red tree is dangerous. Add edges to blue tree.
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Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

3 2

111 11

I The red tree is dangerous. Add edges to blue tree.
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Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

3 3

111 111

I The red tree is dangerous. Add edges to blue tree.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

3 4

111 1111

I The red tree is dangerous. Add edges to blue tree.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

3 4

111 1111

I The red tree is dangerous. Add edges to blue tree.

I The blue active vertex is finished. Move the blue active vertex.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

3 4

111 1111

I Status: red tree still dangerous; blue tree not dangerous and blue
active vertex not finished.
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Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.
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I Status: red tree still dangerous; blue tree not dangerous and blue
active vertex not finished.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

3 4

111 1113

1 1

I Status: red tree still dangerous; blue tree not dangerous and blue
active vertex not finished.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

3 4

111 1114

1 1 1

I Status: red tree still dangerous; blue tree not dangerous and blue
active vertex not finished.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

4 4

111 1115

1 1 1

I Both trees dangerous: present edge between active vertices.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

4 4

111 1115

1 1 1

I Both trees dangerous: present edge between active vertices.

I Edge colored red, so blue tree’s active vertex and red children move
to red tree.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

4

111 5

1 1

I Both trees dangerous: present edge between active vertices.

I Edge colored red, so blue tree’s active vertex and red children move
to red tree.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

4 4

111 1114

1 1 1

5

1 1

I Use Consistent Painter to regenerate blue tree.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree
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1 1 1
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I Both trees dangerous: present edge between active vertices.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

5

111 5

1 1

5

1 1

I Both trees dangerous: present edge between active vertices.

I Move blue tree’s active vertex and red children to red tree.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree
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I Use Consistent Painter to regenerate blue tree.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

6 4

111 1114

1 1 1

5

1 1

5

1 1

5

1 1

I Use Consistent Painter to regenerate blue tree.

I And once more.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

6 4

111 1114

1 1 1

5

1 1

5

1 1

5

1 1

I Edge between active vertices only when both trees are dangerous.

I A tree inherits only finished vertices and leaves from the other.



Trees

Theorem
Let T be a tree with a single vertex r of maximum degree. If
d(r) = 4 and d(u) ≤ 3 for each u 6= r , then odr(T ) ≤ 4+3−1 = 6.

Red Tree Blue Tree

6 4

1 1114

1 1 1

5

1 1

5

1 1

5

1 1

6

1

I Edge between active vertices only when both trees are dangerous.

I A tree inherits only finished vertices and leaves from the other.

I Active vertex moves from a finished vertex to a leaf closest to root.



Cycles

Theorem
For each cycle Cn, we have 4 ≤ odr(Cn) ≤ 5.

I For all but finitely many cycles Cn, we have odr(Cn) = 4.

I First step: if n is even, then odr(Cn) = 4.

Proof (idea).

I Lower bound: characterization of odr(G ) ≤ 3.
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I Upper bound: explicit Builder strategies.
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Theorem
For each cycle Cn, we have 4 ≤ odr(Cn) ≤ 5.

I For all but finitely many cycles Cn, we have odr(Cn) = 4.

I First step: if n is even, then odr(Cn) = 4.

Proof (idea).

I Lower bound: characterization of odr(G ) ≤ 3.

I Upper bound: explicit Builder strategies.



Even Cycles

Lemma (Union Lemma)

If n is even, then in S4, we have F ≤ 2 G≤ 2 ,Cn

 →

 F ≤ 4 G≤ 4 ,Cn

 .



Union Lemma Proof

1. Builder forces n/2
copies of F ∪ G in
one color (say red).

2. Builder presents a
cycle through
specified vertices.

3. If some edge is red,
we have F ∪ G in
red.

4. If all edges are blue,
we have Cn in blue.
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Odd Cycles

I The Union Lemma does not help when Builder wants to force
odd cycles.

I Nevertheless, weaker variants are possible that help when n is
odd.

Theorem
If n is even, n = 3, 337 ≤ n ≤ 514, or n ≥ 689, then odr(Cn) = 4.
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I The Union Lemma does not help when Builder wants to force
odd cycles.

I Nevertheless, weaker variants are possible that help when n is
odd.

Theorem
If n is even, n = 3, 337 ≤ n ≤ 514, or n ≥ 689, then odr(Cn) = 4.



Open Problems

1. Characterize when odr(G ) ≤ 4.

2. What is odr(Cn) when n ≥ 5 is small and odd? (We know
odr(Cn) ∈ {4, 5}).

3. In particular, what is odr(C5)?

4. Is it true that odr(G ) ≤ f (∆(G )) for some function f ?

4.1 Yes for trees: odr(T ) ≤ 2∆(T )− 1.
4.2 Yes for ∆(G ) ≤ 2.

5. Develop more strategies for Painter.
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