Monotone Paths in Dense Edge-Ordered Graphs

Kevin G. Milans (milans@math.wvu.edu)

West Virginia University

AMS Spring Southeastern Sectional Meeting University of Georgia Athens, GA March 5, 2016

 Let G be a graph whose edges are ordered according to a labeling φ.

Let G be a graph whose edges are ordered according to a labeling φ.

Let G be a graph whose edges are ordered according to a labeling φ.

• A monotone path traverses edges in increasing order.

Let G be a graph whose edges are ordered according to a labeling φ.

• A monotone path traverses edges in increasing order.

Let G be a graph whose edges are ordered according to a labeling φ.

- A monotone path traverses edges in increasing order.
- The altitude of G, denoted f(G), is the maximum integer k such that every edge-ordering of G has a monotone path of length k.

Let G be a graph whose edges are ordered according to a labeling φ.

- A monotone path traverses edges in increasing order.
- The altitude of G, denoted f(G), is the maximum integer k such that every edge-ordering of G has a monotone path of length k.
- ▶ [Chvátal–Komlós (1971)] What is *f*(*K_n*)?

Theorem (Graham–Kleitman (1973)) $\sqrt{n-\frac{3}{4}}-\frac{1}{2} \le f(K_n) \le \frac{3n}{4}$

Theorem (Graham-Kleitman (1973)) $\sqrt{n-\frac{3}{4}}-\frac{1}{2} \le f(K_n) \le \frac{3n}{4}$

▶ Rödl: Graham–Kleitman and design theory give $f(K_n) \le (\frac{2}{3} + o(1))n$

Theorem (Graham–Kleitman (1973)) $\sqrt{n-\frac{3}{4}}-\frac{1}{2} \le f(K_n) \le \frac{3n}{4}$

- ▶ Rödl: Graham–Kleitman and design theory give $f(K_n) \le (\frac{2}{3} + o(1))n$
- ► Alspach–Heinrich–Graham (unpublished): $f(K_n) \le (\frac{7}{12} + o(1))n$

Theorem (Graham–Kleitman (1973)) $\sqrt{n-\frac{3}{4}} - \frac{1}{2} \le f(K_n) \le \frac{3n}{4}$

- ▶ Rödl: Graham–Kleitman and design theory give $f(K_n) \le (\frac{2}{3} + o(1))n$
- ► Alspach-Heinrich-Graham (unpublished): $f(K_n) \le (\frac{7}{12} + o(1))n$

Theorem (Calderbank–Chung–Sturtevant (1984)) $f(K_n) \le (\frac{1}{2} + o(1))n$

 Roditty–Shoham–Yuster (2001): the max. altitude of a planar graph is in {5, 6, 7, 8, 9}.

- Roditty–Shoham–Yuster (2001): the max. altitude of a planar graph is in {5, 6, 7, 8, 9}.
- ► Alon (2003): the max. altitude of a k-regular graph is in {k, k + 1}.

- Roditty–Shoham–Yuster (2001): the max. altitude of a planar graph is in {5, 6, 7, 8, 9}.
- ► Alon (2003): the max. altitude of a k-regular graph is in {k, k + 1}.
- Mynhardt-Burger-Clark-Falvai-Henderson (2005): the max. altitude of a 3-regular graph is 4, achieved by the flower snarks.

- Roditty–Shoham–Yuster (2001): the max. altitude of a planar graph is in {5, 6, 7, 8, 9}.
- ► Alon (2003): the max. altitude of a k-regular graph is in {k, k + 1}.
- Mynhardt-Burger-Clark-Falvai-Henderson (2005): the max. altitude of a 3-regular graph is 4, achieved by the flower snarks.

Theorem (De Silva–Molla–Pfender–Retter–Tait (2015+))

• $f(Q_n) \ge n/\lg n$

- Roditty–Shoham–Yuster (2001): the max. altitude of a planar graph is in {5, 6, 7, 8, 9}.
- ► Alon (2003): the max. altitude of a k-regular graph is in {k, k + 1}.
- Mynhardt-Burger-Clark-Falvai-Henderson (2005): the max. altitude of a 3-regular graph is 4, achieved by the flower snarks.

Theorem (De Silva–Molla–Pfender–Retter–Tait (2015+))

- $f(Q_n) \ge n/\lg n$
- ► If $p(n) = \omega(\log n/\sqrt{n})$, then $f(G(n, p)) \ge (1 o(1))\sqrt{n}$ with probability tending to 1.

Random edge-orderings

Theorem (Lavrov–Loh (2015+))

► With probability tending to 1, a random edge-labeling of K_n has a monotone path of length 0.85n.

Random edge-orderings

Theorem (Lavrov–Loh (2015+))

- ► With probability tending to 1, a random edge-labeling of K_n has a monotone path of length 0.85n.
- With probability at least 1/e − o(1), a random edge-labeling of K_n has a Hamiltonian monotone path.

Random edge-orderings

Theorem (Lavrov–Loh (2015+))

- ► With probability tending to 1, a random edge-labeling of K_n has a monotone path of length 0.85n.
- With probability at least 1/e − o(1), a random edge-labeling of K_n has a Hamiltonian monotone path.

Conjecture (Lavrov-Loh)

With high probability, a random edge-labeling of K_n has a Hamiltonian monotone path.

Theorem (Graham–Kleitman (1973)) $f(K_n) \ge \sqrt{n - \frac{3}{4}} - \frac{1}{2}$

Theorem (Graham–Kleitman (1973)) $f(K_n) \ge \sqrt{n - \frac{3}{4}} - \frac{1}{2}$

Theorem (Rödl (1973))

If G has average degree d, then $f(G) \ge (1 - o(1))\sqrt{d}$.

Theorem (Graham–Kleitman (1973)) $f(K_n) \ge \sqrt{n - \frac{3}{4}} - \frac{1}{2}$

Theorem (Rödl (1973))

If G has average degree d, then $f(G) \geq (1 - o(1))\sqrt{d}$.

Theorem

Let G be an n-vertex graph, and let $s = Cn^{1/3}(\lg n)^{2/3}$. If G has average degree d, then

$$f(G) \geq \frac{d}{4s}\left(1-\frac{2}{d}\right)\left(1-\frac{1}{s}\right)\left(1-\frac{4s^2}{d-2}\right).$$

Theorem (Graham–Kleitman (1973)) $f(K_n) \ge \sqrt{n - \frac{3}{4}} - \frac{1}{2}$

Theorem (Rödl (1973))

If G has average degree d, then $f(G) \geq (1 - o(1))\sqrt{d}$.

Theorem

Let G be an n-vertex graph, and let $s = Cn^{1/3}(\lg n)^{2/3}$. If G has average degree d, then

$$f(G) \geq \frac{d}{4s}\left(1-\frac{2}{d}\right)\left(1-\frac{1}{s}\right)\left(1-\frac{4s^2}{d-2}\right).$$

Corollary
$$f(K_n) \ge (\frac{1}{20} - o(1))(n/\lg n)^{2/3}$$

• Let G be a graph with vertices w_1, \ldots, w_n .

► The height table A has a column for each vertex in G.

• Let G be a graph with vertices w_1, \ldots, w_n .

► The height table A has a column for each vertex in G.

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

16	24	35	46		
w ₁	w2	w ₃	w4	w ₅	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

16	24	35	46	56	
w ₁	w2	w ₃	w4	w ₅	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

16	24	35	46	56	62
w ₁	w2	w ₃	w ₄	w ₅	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

13					
16	24	35	46	56	62
w ₁	w2	w ₃	w4	w ₅	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

13	23				
16	24	35	46	56	62
w ₁	w2	w ₃	w4	w5	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

13	23	34			
16	24	35	46	56	62
w ₁	w2	w3	w ₄	w ₅	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

13	23	34	41		
16	24	35	46	56	62
w_1	w2	w ₃	w4	w5	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

13	23	34	41	51	
16	24	35	46	56	62
w ₁	w2	w ₃	w4	w ₅	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

13	23	34	41	51	63
16	24	35	46	56	62
w1	w2	w ₃	w4	w ₅	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

12					1
13	23	34	41	51	63
16	24	35	46	56	62
w ₁	w2	w3	w ₄	w ₅	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

12	25				
13	23	34	41	51	63
16	24	35	46	56	62
w ₁	w2	w ₃	w ₄	w ₅	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

12	25	-			
13	23	34	41	51	63
16	24	35	46	56	62
w ₁	w2	w ₃	w ₄	w ₅	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

12	25	-	45		
13	23	34	41	51	63
16	24	35	46	56	62
w ₁	w2	w ₃	w4	w ₅	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.

12	25	-	45		
13	23	34	41	51	63
16	24	35	46	56	62
w ₁	w2	w ₃	w ₄	w ₅	w ₆

- ► The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column *i* is the edge incident to w_i with largest label not already appearing in A.
- ► The height of an edge e, denoted h(e), is the index of the row containing e. For example, h(w₁w₂) = 3.

• Given *G*, construct the height table *A*.

- Given G, construct the height table A.
- Let x_0x_1 be a max-height edge in column x_0 . Set $P = x_0x_1$.

Let P be a monotone path x₀...x_k; let e = x_{k-1}x_k. We extend P as follows.

Let P be a monotone path x₀...x_k; let e = x_{k-1}x_k. We extend P as follows.

• Note $\varphi(e') > \varphi(e)$ if e' is in a lower row in column x_k .

Let P be a monotone path x₀...x_k; let e = x_{k-1}x_k. We extend P as follows.

• Note $\varphi(e') > \varphi(e)$ if e' is in a lower row in column x_k .

Let P be a monotone path x₀...x_k; let e = x_{k-1}x_k. We extend P as follows.

• Note $\varphi(e') > \varphi(e)$ if e' is in a lower row in column x_k .

- Let P be a monotone path x₀...x_k; let e = x_{k−1}x_k. We extend P as follows.
 - Note $\varphi(e') > \varphi(e)$ if e' is in a lower row in column x_k .
 - ▶ Let e' be the highest such edge joining x_k to a vertex outside {x₁,..., x_{k-1}}.
 - ► Extend *P* along *e*′.

- Let P be a monotone path x₀...x_k; let e = x_{k-1}x_k. We extend P as follows.
 - Note $\varphi(e') > \varphi(e)$ if e' is in a lower row in column x_k .
 - Let e' be the highest such edge joining x_k to a vertex outside {x₁,..., x_{k−1}}.
 - Extend P along e'.
- ► Iteratively extending gives f(G) ≥ [1/2 + √d], matching Rödl's bound asymptotically.

• Given G, construct the height table A. Let $P = x_0x_1$, where x_0x_1 is a max-height edge.

x₀ x₁

• Given G, construct the height table A. Let $P = x_0x_1$, where x_0x_1 is a max-height edge.

- Given G, construct the height table A. Let $P = x_0x_1$, where x_0x_1 is a max-height edge.
- Extend *P* to $x_0 ... x_{s+1}$, where $s = Cn^{1/3} (\lg n)^{2/3}$.

- Given G, construct the height table A. Let $P = x_0x_1$, where x_0x_1 is a max-height edge.
- Extend *P* to $x_0 ... x_{s+1}$, where $s = Cn^{1/3} (\lg n)^{2/3}$.

• Let
$$G' = G - \{x_0, \dots, x_{s-1}\}.$$

- Given G, construct the height table A. Let $P = x_0x_1$, where x_0x_1 is a max-height edge.
- Extend *P* to $x_0 ... x_{s+1}$, where $s = Cn^{1/3} (\lg n)^{2/3}$.

• Let
$$G' = G - \{x_0, \dots, x_{s-1}\}.$$

• Recursively find a long mono. path in G' extending $x_s x_{s+1}$.

• Extending to $x_0 \dots x_{s+1}$ uses at most $\binom{s+1}{2}$ rows of A.

Analysis:

- Extending to $x_0 \dots x_{s+1}$ uses at most $\binom{s+1}{2}$ rows of A.
- ► Let g(n, s) be the maximum loss of height of an edge when deleting s vertices from an n-vertex graph.

Analysis:

- Extending to $x_0 \dots x_{s+1}$ uses at most $\binom{s+1}{2}$ rows of A.
- ► Let g(n, s) be the maximum loss of height of an edge when deleting s vertices from an n-vertex graph.
- From G to G', the height of $x_s x_{s+1}$ falls by at most g(n, s).

Analysis:

- Extending to $x_0 \dots x_{s+1}$ uses at most $\binom{s+1}{2}$ rows of A.
- ► Let g(n, s) be the maximum loss of height of an edge when deleting s vertices from an n-vertex graph.
- From G to G', the height of $x_s x_{s+1}$ falls by at most g(n, s).
- Each iteration extends the path by s edges and costs at most $\binom{s+1}{2} + g(n, s)$ in height.

Analysis:

- Extending to $x_0 \dots x_{s+1}$ uses at most $\binom{s+1}{2}$ rows of A.
- ► Let g(n, s) be the maximum loss of height of an edge when deleting s vertices from an n-vertex graph.
- From G to G', the height of $x_s x_{s+1}$ falls by at most g(n, s).
- Each iteration extends the path by s edges and costs at most $\binom{s+1}{2} + g(n,s)$ in height.

Lemma

If G has average degree d, then $f(G) \ge s \left| \frac{d/2-1}{\binom{s+1}{2} + g(n,s)} \right|$.

Some cells contain tokens, others are empty.

- Some cells contain tokens, others are empty.
- One of the columns is *active*.

- Some cells contain tokens, others are empty.
- One of the columns is *active*.
- Initially, each column has at most s tokens.

- Some cells contain tokens, others are empty.
- One of the columns is *active*.
- ► Initially, each column has at most *s* tokens.
- A token is grounded if all lower cells in the same column contain tokens.

• A step produces a new token array as follows:

- A step produces a new token array as follows:
 - 1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.

- A step produces a new token array as follows:
 - 1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.

- A step produces a new token array as follows:
 - 1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
 - 2. All ungrounded tokens in the active column drop by one cell.

- A step produces a new token array as follows:
 - 1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
 - 2. All ungrounded tokens in the active column drop by one cell.

- A step produces a new token array as follows:
 - 1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
 - 2. All ungrounded tokens in the active column drop by one cell.
 - 3. The active column advances.

- A step produces a new token array as follows:
 - 1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
 - 2. All ungrounded tokens in the active column drop by one cell.
 - 3. The active column advances.

- A step produces a new token array as follows:
 - 1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
 - 2. All ungrounded tokens in the active column drop by one cell.
 - 3. The active column advances.

- A step produces a new token array as follows:
 - 1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
 - 2. All ungrounded tokens in the active column drop by one cell.
 - 3. The active column advances.

- A step produces a new token array as follows:
 - 1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
 - 2. All ungrounded tokens in the active column drop by one cell.
 - 3. The active column advances.

- A step produces a new token array as follows:
 - 1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
 - 2. All ungrounded tokens in the active column drop by one cell.
 - 3. The active column advances.

- A step produces a new token array as follows:
 - 1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
 - 2. All ungrounded tokens in the active column drop by one cell.
 - 3. The active column advances.

- A step produces a new token array as follows:
 - 1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
 - 2. All ungrounded tokens in the active column drop by one cell.
 - 3. The active column advances.

Let ĝ(n, s) be the maximum number of tokens in a column in an (n, s)-token game.

Let ĝ(n, s) be the maximum number of tokens in a column in an (n, s)-token game.

Lemma $g(n,s) \leq \hat{g}(n-s,s)$

Let ĝ(n, s) be the maximum number of tokens in a column in an (n, s)-token game.

Lemma

 $g(n,s) \leq \hat{g}(n-s,s)$

Lemma $\Omega(s + \sqrt{ns}) \le \hat{g}(n, s) \le O(s + \sqrt{ns} \log n)$

Lemma

If G has average degree d, then
$$f(G) \ge s \left\lfloor \frac{d/2-1}{\binom{s+1}{2} + g(n,s)} \right\rfloor$$
.

Lemma

If G has average degree d, then
$$f(G) \ge s \left\lfloor \frac{d/2-1}{\binom{s+1}{2} + g(n,s)} \right\rfloor$$
.

Lemma

 $\Omega(s + \sqrt{ns}) \leq \hat{g}(n, s) \leq O(s + \sqrt{ns} \log n)$

Lemma

If G has average degree d, then
$$f(G) \ge s \left\lfloor \frac{d/2-1}{\binom{s+1}{2} + g(n,s)} \right\rfloor$$
.

Lemma

$$\Omega(s+\sqrt{ns}) \leq \hat{g}(n,s) \leq O(s+\sqrt{ns}\log n)$$

Theorem

Let G be an n-vertex graph, and let $s = Cn^{1/3}(\lg n)^{2/3}$. If G has average degree d, then

$$f(G) \geq \frac{d}{4s}\left(1-\frac{2}{d}\right)\left(1-\frac{1}{2}\right)\left(1-\frac{4s^2}{d-2}\right).$$

In particular, $f(K_n) \ge (\frac{1}{20} - o(1))(n/\lg n)^{2/3}$.

lemma

If G has average degree d, then
$$f(G) \ge s \left\lfloor \frac{d/2-1}{\binom{s+1}{2} + g(n,s)} \right\rfloor$$
.

lemma

$$\Omega(s+\sqrt{ns}) \leq \hat{g}(n,s) \leq O(s+\sqrt{ns}\log n)$$

Theorem

Let G be an n-vertex graph, and let $s = Cn^{1/3}(\lg n)^{2/3}$. If G has average degree d, then

$$f(G) \geq \frac{d}{4s}\left(1-\frac{2}{d}\right)\left(1-\frac{1}{2}\right)\left(1-\frac{4s^2}{d-2}\right).$$

In particular, $f(K_n) \ge (\frac{1}{20} - o(1))(n/\lg n)^{2/3}$.

Question

Can the bound $g(n, s) \leq O(s + \sqrt{ns} \log n)$ be improved?

lemma

If G has average degree d, then
$$f(G) \ge s \left\lfloor \frac{d/2-1}{\binom{s+1}{2} + g(n,s)} \right\rfloor$$
.

lemma

$$\Omega(s+\sqrt{ns}) \leq \hat{g}(n,s) \leq O(s+\sqrt{ns}\log n)$$

Theorem

Let G be an n-vertex graph, and let $s = Cn^{1/3}(\lg n)^{2/3}$. If G has average degree d, then

$$f(G) \geq \frac{d}{4s}\left(1-\frac{2}{d}\right)\left(1-\frac{1}{2}\right)\left(1-\frac{4s^2}{d-2}\right).$$

In particular, $f(K_n) \ge (\frac{1}{20} - o(1))(n/\lg n)^{2/3}$.

Question

Can the bound $g(n,s) \leq O(s + \sqrt{ns} \log n)$ be improved? Thank You.