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Monotone paths

I Let G be a graph whose edges are ordered according to a
labeling ϕ.

I A monotone path traverses edges in increasing order.

I The altitude of G , denoted f (G ), is the maximum integer k
such that every edge-ordering of G has a monotone path of
length k .

I [Chvátal–Komlós (1971)] What is f (Kn)?
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I Rödl: Graham–Kleitman and design theory give
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Prior work II

I Roditty–Shoham–Yuster (2001): the max. altitude of a planar
graph is in {5, 6, 7, 8, 9}.

I Alon (2003): the max. altitude of a k-regular graph is in
{k , k + 1}.

I Mynhardt–Burger–Clark–Falvai–Henderson (2005): the max.
altitude of a 3-regular graph is 4, achieved by the flower
snarks.

Theorem (De Silva–Molla–Pfender–Retter–Tait (2015+))

I f (Qn) ≥ n/ lg n

I If p(n) = ω(log n/
√
n), then f (G (n, p)) ≥ (1− o(1))

√
n with

probability tending to 1.
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Theorem (Lavrov–Loh (2015+))

I With probability tending to 1, a random edge-labeling of Kn

has a monotone path of length 0.85n.

I With probability at least 1/e − o(1), a random edge-labeling
of Kn has a Hamiltonian monotone path.

Conjecture (Lavrov–Loh)

With high probability, a random edge-labeling of Kn has a
Hamiltonian monotone path.
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I Fill in the cells row by row, from bottom to top.

I Next entry in column i is the edge incident to wi with largest
label not already appearing in A.

I The height of an edge e, denoted h(e), is the index of the row
containing e. For example, h(w1w2) = 3.
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I Let P be a monotone path x0 . . . xk ; let e = xk−1xk . We
extend P as follows.

I Note ϕ(e′) > ϕ(e) if e′ is in a lower row in column xk .
I Let e′ be the highest such edge joining xk to a vertex outside
{x1, . . . , xk−1}.

I Extend P along e′.

I Iteratively extending gives f (G ) ≥
⌊

1/2 +
√
d
⌋

, matching

Rödl’s bound asymptotically.
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Rödl’s bound asymptotically.



Monotone path extension

x0 x1 x2 xk−1 xk

. . . e

e′
e′

xk+1

e′

x0

x0x1

xk−1

e

xk

e′

e′

e′

I Let P be a monotone path x0 . . . xk ; let e = xk−1xk . We
extend P as follows.

I Note ϕ(e′) > ϕ(e) if e′ is in a lower row in column xk .
I Let e′ be the highest such edge joining xk to a vertex outside
{x1, . . . , xk−1}.

I Extend P along e′.

I Iteratively extending gives f (G ) ≥
⌊

1/2 +
√
d
⌋

, matching
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I Given G , construct the height table A. Let P = x0x1, where
x0x1 is a max-height edge.

I Extend P to x0 . . . xs+1, where s = Cn1/3(lg n)2/3.

I Let G ′ = G − {x0, . . . , xs−1}.
I Recursively find a long mono. path in G ′ extending xsxs+1.

Lemma

If G has average degree d, then f (G ) ≥ s

⌊
d/2−1

(s+1
2 )+g(n,s)

⌋
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Analysis:

I Extending to x0 . . . xs+1 uses at most
(s+1

2

)
rows of A.

I Let g(n, s) be the maximum loss of height of an edge when
deleting s vertices from an n-vertex graph.

I From G to G ′, the height of xsxs+1 falls by at most g(n, s).

I Each iteration extends the path by s edges and costs at most(s+1
2
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I Some cells contain tokens, others are empty.
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I Initially, each column has at most s tokens.

I A token is grounded if all lower cells in the same column
contain tokens.
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I A step produces a new token array as follows:

1. The highest grounded token in the active column may move to
an empty cell in another column, provided that its height does
not increase and no previous step moved a token between
these columns.

2. All ungrounded tokens in the active column drop by one cell.
3. The active column advances.
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I Let ĝ(n, s) be the maximum number of tokens in a column in
an (n, s)-token game.

Lemma
g(n, s) ≤ ĝ(n − s, s)

Lemma
Ω(s +

√
ns) ≤ ĝ(n, s) ≤ O(s +

√
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ns) ≤ ĝ(n, s) ≤ O(s +

√
ns log n)

Theorem
Let G be an n-vertex graph, and let s = Cn1/3(lg n)2/3. If G has
average degree d, then

f (G ) ≥ d

4s

(
1− 2

d

)(
1− 1

2

)(
1− 4s2

d − 2

)
.

In particular, f (Kn) ≥ ( 1
20 − o(1))(n/ lg n)2/3.

Question
Can the bound g(n, s) ≤ O(s +

√
ns log n) be improved?

Thank You.
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