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» Let G be a graph whose edges are ordered according to a
labeling .

» A monotone path traverses edges in increasing order.

» The altitude of G, denoted 7(G), is the maximum integer k
such that every edge-ordering of G has a monotone path of
length k.

» [Chvatal-Komlés (1971)] What is f(K,)?
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Prior work I

» Roditty-Shoham—Yuster (2001): the max. altitude of a planar
graph is in {5,6,7,8,9}.

» Alon (2003): the max. altitude of a k-regular graph is in
{k,k+1}.

» Mynhardt-Burger—Clark—Falvai-Henderson (2005): the max.
altitude of a 3-regular graph is 4, achieved by the flower
snarks.

Theorem (De Silva—Molla—Pfender-Retter—Tait (2015+))

» f(Qn) >n/lgn
» If p(n) = w(logn/\/n), then f(G(n,p)) > (1 — o(1))\/n with
probability tending to 1.
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Random edge-orderings

Theorem (Lavrov—Loh (2015+))

» With probability tending to 1, a random edge-labeling of K,
has a monotone path of length 0.85n.

» With probability at least 1/e — o(1), a random edge-labeling
of K, has a Hamiltonian monotone path.

Conjecture (Lavrov—Loh)

With high probability, a random edge-labeling of K, has a
Hamiltonian monotone path.
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Our result

Theorem (Graham—Kleitman (1973))

f(Kn) >y/n—32—3

Theorem (R&dI (1973))
If G has average degree d, then f(G) > (1 — o(1))Vd.

Theorem
Let G be an n-vertex graph, and let s = Cn'/3(Ig n)?/3. If G has
average degree d, then

©:2(-3)(-2) (-)

Corollary
f(Kn) 2 (25 — o(1))(n/ Ig n)*/>
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> Let G be a graph with vertices wy, ..., w,.
w, wy
1225 | - | 45
- 13 | 23 | 34 | 41 | 51 | 63
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» The height table A has a column for each vertex in G.
» Fill in the cells row by row, from bottom to top.

» Next entry in column i is the edge incident to w; with largest
label not already appearing in A.

» The height of an edge e, denoted h(e), is the index of the row
containing e. For example, h(wiwo) = 3.
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> Let xgx; be a max-height edge in column xp. Set P = xpxi.
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> Let P be a monotone path xp...xk; let e = xx_1x,. We
extend P as follows.

» Note p(e’) > p(e) if € is in a lower row in column x.

» Let ¢’ be the highest such edge joining x, to a vertex outside
{Xl7 N ,kal}-

» Extend P along ¢’.



Monotone path

X0 X1 X2

> Let P be a monotone path xp...xk; let e = xx_1x,. We

extension

/
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Xk—1 Xk Xk+1

Xk—1

extend P as follows.

» Note p(e’) > p(e) if € is in a lower row in column x.
» Let ¢’ be the highest such edge joining x, to a vertex outside

{X17..

,kal}-

» Extend P along ¢’.

> lteratively extending gives f(G) > L1/2 + \/HJ matching

Rodl's bound asymptotically.

Xk
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The algorithm

X0 X1

» Given G, construct the height table A. Let P = xpx1, where
Xox1 is @ max-height edge.

» Extend P to Xxp...Xs+1, Wwhere s = Cn1/3(lg n)2/3.

» Let G' =G —{x0,...,%xs—1}
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v

Given G, construct the height table A. Let P = xgx1, where
Xpx1 is a max-height edge.

Extend P to Xp ... Xs41, where s = Cn'/3(Ig n)?/3.
Let G' =G — {Xo, R ;Xs—l}-

Recursively find a long mono. path in G’ extending xsxs1-

v

v

v
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» Let g(n,s) be the maximum loss of height of an edge when
deleting s vertices from an n-vertex graph.
» From G to G/, the height of xsxs41 falls by at most g(n, s).
» Each iteration extends the path by s edges and costs at most
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The algorithm

Xs+1

X0 X1 Xs—1 Xs

Analysis:
» Extending to Xg...Xs41 USes at most (5451) rows of A.
» Let g(n,s) be the maximum loss of height of an edge when
deleting s vertices from an n-vertex graph.
» From G to G/, the height of xsxs41 falls by at most g(n, s).
» Each iteration extends the path by s edges and costs at most
(sgl) + g(n, s) in height.

Lemma

F(G)>s | a2t |
If G has average degree d, then f(G) > s hs;l)Jrg(n,s)
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» Some cells contain tokens, others are empty.
» One of the columns is active.

» Initially, each column has at most s tokens.
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» Some cells contain tokens, others are empty.
» One of the columns is active.
» Initially, each column has at most s tokens.
> A token is grounded if all lower cells in the same column

contain tokens.



The (n, s)-token game

[ d
[ ] ®
[ J [ ]
([ J
(J [ J
@ @
T

» A step produces a new token array as follows:



The (n, s)-token game

[ d
[ ] ®
[ J [ ]
([ J
(J [ J
@ @
T

» A step produces a new token array as follows:

1. The highest grounded token in the active column may move to
an empty cell in another column, provided that its height does
not increase and no previous step moved a token between
these columns.



The (n, s)-token game

[ d
[ ] ®
[ J [ ]
([ J
[ J
@ [ J @
T

» A step produces a new token array as follows:

1. The highest grounded token in the active column may move to
an empty cell in another column, provided that its height does
not increase and no previous step moved a token between
these columns.



The (n, s)-token game

[ d
[ ] ®
[ J [ ]
([ J
[ J
@ [ J @
T

» A step produces a new token array as follows:

1. The highest grounded token in the active column may move to
an empty cell in another column, provided that its height does
not increase and no previous step moved a token between
these columns.

2. All ungrounded tokens in the active column drop by one cell.



The (n, s)-token game

[ d
[ ] ®
[ ]
[ J
([ J
[ J
@ [ J @
T

» A step produces a new token array as follows:

1. The highest grounded token in the active column may move to
an empty cell in another column, provided that its height does
not increase and no previous step moved a token between
these columns.

2. All ungrounded tokens in the active column drop by one cell.



The (n, s)-token game

[ d
[ ] ®
[ ]
[ J
([ J
[ J
@ [ J @
T

» A step produces a new token array as follows:

1. The highest grounded token in the active column may move to
an empty cell in another column, provided that its height does
not increase and no previous step moved a token between
these columns.

2. All ungrounded tokens in the active column drop by one cell.

3. The active column advances.



The (n, s)-token game

/r
» A step produces a new token array as follows:

1. The highest grounded token in the active column may move to
an empty cell in another column, provided that its height does
not increase and no previous step moved a token between
these columns.

2. All ungrounded tokens in the active column drop by one cell.

3. The active column advances.



The (n, s)-token game

°
o |o
°

°

°
°

o |o °

D

» A step produces a new token array as follows:

1. The highest grounded token in the active column may move to
an empty cell in another column, provided that its height does
not increase and no previous step moved a token between
these columns.

2. All ungrounded tokens in the active column drop by one cell.

3. The active column advances.



The (n, s)-token game

o |o
°
o |o
°
°
o |o °
0

» A step produces a new token array as follows:

1. The highest grounded token in the active column may move to
an empty cell in another column, provided that its height does
not increase and no previous step moved a token between
these columns.

2. All ungrounded tokens in the active column drop by one cell.

3. The active column advances.



The (n, s)-token game

o |o
°
o |o
°
°
o |o °
0

» A step produces a new token array as follows:

1. The highest grounded token in the active column may move to
an empty cell in another column, provided that its height does
not increase and no previous step moved a token between
these columns.

2. All ungrounded tokens in the active column drop by one cell.

3. The active column advances.



The (n, s)-token game

°
o |o
o |o
°
°
o |o °
D

» A step produces a new token array as follows:

1. The highest grounded token in the active column may move to
an empty cell in another column, provided that its height does
not increase and no previous step moved a token between
these columns.

2. All ungrounded tokens in the active column drop by one cell.

3. The active column advances.



The (n, s)-token game

=2k 2K 2K J

» A step produces a new token array as follows:

1. The highest grounded token in the active column may move to
an empty cell in another column, provided that its height does
not increase and no previous step moved a token between
these columns.

2. All ungrounded tokens in the active column drop by one cell.

3. The active column advances.



The (n, s)-token game

1\
» A step produces a new token array as follows:

1. The highest grounded token in the active column may move to
an empty cell in another column, provided that its height does
not increase and no previous step moved a token between
these columns.

2. All ungrounded tokens in the active column drop by one cell.

3. The active column advances.



The (n, s)-token game

1\
» Let g(n,s) be the maximum number of tokens in a column in
an (n, s)-token game.



The (n, s)-token game

1\
» Let g(n,s) be the maximum number of tokens in a column in
an (n, s)-token game.

Lemma
g(n,s) S é\-(n - 575)



The (n, s)-token game

1\
» Let g(n,s) be the maximum number of tokens in a column in
an (n, s)-token game.

Lemma
g(n,s) S é\-(n - 575)

Lemma

Qs+ y/75) < &(n,s) < O(s + /s log n)



Summary

Lemma

If G has average d d. then f(G) > s | —42=L |
verage degree en f( )s\‘(sgl)+g(n,s)



Summary

Lemma

G has average degree d, then f(G) > s {(s;l)ﬂ;(n,s)

Lemma
Qs+ y/75) < &(n,s) < O(s + /s log n)



Summary

Lemma

G has average degree d, then f(G) > s {(s;l)Jrg(n,s)

Lemma
Qs+ y/75) < &(n,s) < O(s + /s log n)
Theorem

Let G be an n-vertex graph, and let s = Cn*/3(Ig n)*/3. If G has
average degree d, then

02 (-3)0-2) (-




Summary

Lemma

G has average degree d, then f(G) > s {(s;l)Jrg(n,s)

Lemma
Qs+ y/75) < &(n,s) < O(s + /s log n)
Theorem

Let G be an n-vertex graph, and let s = Cn*/3(Ig n)*/3. If G has
average degree d, then

02 (-3)0-2) (-

In particular, f(K,) > (% — o(1))(n/ Ig n)?/3.

Question
Can the bound g(n,s) < O(s + /nslog n) be improved?



Summary

Lemma

G has average degree d, then f(G) > s {(s;l)Jrg(n,s)

Lemma
Qs+ y/75) < &(n,s) < O(s + /s log n)
Theorem

Let G be an n-vertex graph, and let s = Cn*/3(Ig n)*/3. If G has
average degree d, then
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In particular, f(K,) > (% — o(1))(n/ Ig n)?/3.

Question
Can the bound g(n,s) < O(s + /nslog n) be improved?

Thank You.
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