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Ternary tree T with depth n = 3.

I Let T be a {0, 1}-edge-labeled perfect ternary tree of depth n.

I Each path from the root to a leaf gives a path label in {0, 1}n.

I Let f (T ) be the min., over all perfect binary subtrees S ⊆ T
of depth n, of the number of path labels along paths in S .

I Let f (n) be the max., over all {0, 1}-edge-labeled perfect
ternary trees T of depth n, of f (T ).

I From now on, all trees are perfect and {0, 1}-edge-labeled; all
subtrees have full depth.
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This path has path label 100.
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This subtree contains 3 path labels, so f (T ) ≤ 3.

I Let T be a {0, 1}-edge-labeled perfect ternary tree of depth n.

I Each path from the root to a leaf gives a path label in {0, 1}n.

I Let f (T ) be the min., over all perfect binary subtrees S ⊆ T
of depth n, of the number of path labels along paths in S .

I Let f (n) be the max., over all {0, 1}-edge-labeled perfect
ternary trees T of depth n, of f (T ).

I From now on, all trees are perfect and {0, 1}-edge-labeled; all
subtrees have full depth.
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In fact, f (T ) = 2.
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I Each path from the root to a leaf gives a path label in {0, 1}n.
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of depth n, of the number of path labels along paths in S .

I Let f (n) be the max., over all {0, 1}-edge-labeled perfect
ternary trees T of depth n, of f (T ).

I From now on, all trees are perfect and {0, 1}-edge-labeled; all
subtrees have full depth.
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(f (n))1/n ≤ 2
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Preliminaries

Proposition

If r and s are non-negative integers, then f (r + s) ≥ f (r)f (s).

Proof.

R

S
S S. . .

I Let R be a ternary tree of depth r which
maximizes f (R).

I Let S be a ternary tree of depth s which
maximizes f (S).

I Attach a copy of S to each leaf of R.

I Every binary subtree contains at least
f (r)f (s) path labels.

Corollary

lim
n→∞

(f (n))1/n = sup
{

(f (n))1/n | n ≥ 1
}
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I To obtain a lower bound on f (n), we construct a ternary tree
in which every binary subtree has many path labels.

I The construction uses two different kinds of trees.
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Lower Bound: Construction of Rn

Proposition

Let a0 = 1 and an = d3an−1/2e for n ≥ 0. If n ≥ 0, then there
exists a ternary tree Rn of depth n in which each path label occurs
at most an times.

Corollary

If n ≥ 0, then there exists a ternary tree Rn of depth n in which
each path label occurs at most 2

(
3
2

)n
times.
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I Of the 3|Lx | edges in Rn below vertices in Lx , arbitrarily
choose d3|Lx |/2e to have label 0; the remaining b3|Lx |/2c
edges are labeled 1.

In Rn, a path label x ∈ {0, 1}n occurs at most d3an−1/2e times.

Corollary

If n ≥ 0, then there exists a ternary tree Rn of depth n in which
each path label occurs at most 2

(
3
2

)n
times.



Lower Bound: Construction of Rn

Proposition

Let a0 = 1 and an = d3an−1/2e for n ≥ 0. If n ≥ 0, then there
exists a ternary tree Rn of depth n in which each path label occurs
at most an times.

Proof.
By induction on n. Extend Rn−1 to Rn as follows.

I For each x ∈ {0, 1}n−1, let Lx be the set of leaves in Rn−1

that are endpoints of paths with path label x . Note that
|Lx | ≤ an−1.

I Of the 3|Lx | edges in Rn below vertices in Lx , arbitrarily
choose d3|Lx |/2e to have label 0; the remaining b3|Lx |/2c
edges are labeled 1.

In Rn, a path label x ∈ {0, 1}n occurs at most d3an−1/2e times.

Corollary

If n ≥ 0, then there exists a ternary tree Rn of depth n in which
each path label occurs at most 2

(
3
2

)n
times.



Lower Bound: Construction of Rn

Proposition

Let a0 = 1 and an = d3an−1/2e for n ≥ 0. If n ≥ 0, then there
exists a ternary tree Rn of depth n in which each path label occurs
at most an times.

Proof.
By induction on n. Extend Rn−1 to Rn as follows.

I For each x ∈ {0, 1}n−1, let Lx be the set of leaves in Rn−1

that are endpoints of paths with path label x . Note that
|Lx | ≤ an−1.

I Of the 3|Lx | edges in Rn below vertices in Lx , arbitrarily
choose d3|Lx |/2e to have label 0; the remaining b3|Lx |/2c
edges are labeled 1.

In Rn, a path label x ∈ {0, 1}n occurs at most d3an−1/2e times.

Corollary

If n ≥ 0, then there exists a ternary tree Rn of depth n in which
each path label occurs at most 2

(
3
2

)n
times.



Lower Bound: Construction of Rn

Proposition

Let a0 = 1 and an = d3an−1/2e for n ≥ 0. If n ≥ 0, then there
exists a ternary tree Rn of depth n in which each path label occurs
at most an times.

Proof.
By induction on n. Extend Rn−1 to Rn as follows.

I For each x ∈ {0, 1}n−1, let Lx be the set of leaves in Rn−1

that are endpoints of paths with path label x . Note that
|Lx | ≤ an−1.

I Of the 3|Lx | edges in Rn below vertices in Lx , arbitrarily
choose d3|Lx |/2e to have label 0; the remaining b3|Lx |/2c
edges are labeled 1.

In Rn, a path label x ∈ {0, 1}n occurs at most d3an−1/2e times.

Corollary

If n ≥ 0, then there exists a ternary tree Rn of depth n in which
each path label occurs at most 2

(
3
2

)n
times.



Lower Bound: Construction of Rn

Proposition

Let a0 = 1 and an = d3an−1/2e for n ≥ 0. If n ≥ 0, then there
exists a ternary tree Rn of depth n in which each path label occurs
at most an times.

Remark
The trees Rn are best possible: in each ternary tree of depth n,
some path label occurs at least an times.

Corollary

If n ≥ 0, then there exists a ternary tree Rn of depth n in which
each path label occurs at most 2

(
3
2

)n
times.



Lower Bound: Construction of Rn

Proposition

Let a0 = 1 and an = d3an−1/2e for n ≥ 0. If n ≥ 0, then there
exists a ternary tree Rn of depth n in which each path label occurs
at most an times.

Remark
The trees Rn are best possible: in each ternary tree of depth n,
some path label occurs at least an times.

Corollary

If n ≥ 0, then there exists a ternary tree Rn of depth n in which
each path label occurs at most 2

(
3
2

)n
times.



Lower Bound: Uniform Trees

I For each bitstring y , let Qy be the ternary tree labeled so that
all paths in Qy have the same path label y .

0 0 0

0 0 0 0 0 0 0 0 0

Q00

0 0 0

1 1 1 1 1 1 1 1 1

Q01

1 1 1

0 0 0 0 0 0 0 0 0

Q10

1 1 1

1 1 1 1 1 1 1 1 1

Q11



Lower Bound: Uniform Trees

I For each bitstring y , let Qy be the ternary tree labeled so that
all paths in Qy have the same path label y .

0 0 0

0 0 0 0 0 0 0 0 0

Q00

0 0 0

1 1 1 1 1 1 1 1 1

Q01

1 1 1

0 0 0 0 0 0 0 0 0

Q10

1 1 1

1 1 1 1 1 1 1 1 1

Q11



Lower Bound: Uniform Trees

I For each bitstring y , let Qy be the ternary tree labeled so that
all paths in Qy have the same path label y .

0 0 0

0 0 0 0 0 0 0 0 0

Q00

0 0 0

1 1 1 1 1 1 1 1 1

Q01

1 1 1

0 0 0 0 0 0 0 0 0

Q10

1 1 1

1 1 1 1 1 1 1 1 1

Q11



Lower Bound: Uniform Trees

I For each bitstring y , let Qy be the ternary tree labeled so that
all paths in Qy have the same path label y .

0 0 0

0 0 0 0 0 0 0 0 0

Q00

0 0 0

1 1 1 1 1 1 1 1 1

Q01

1 1 1

0 0 0 0 0 0 0 0 0

Q10

1 1 1

1 1 1 1 1 1 1 1 1

Q11



Lower Bound: Uniform Trees

I For each bitstring y , let Qy be the ternary tree labeled so that
all paths in Qy have the same path label y .

0 0 0

0 0 0 0 0 0 0 0 0

Q00

0 0 0

1 1 1 1 1 1 1 1 1

Q01

1 1 1

0 0 0 0 0 0 0 0 0

Q10

1 1 1

1 1 1 1 1 1 1 1 1

Q11



Lower Bound

Lemma
If m ≥ 0 and s =

⌈
lg 2

(
3
2

)m⌉
, then f (m + s) ≥ 2m.



Lower Bound

Lemma
If m ≥ 0 and s =

⌈
lg 2

(
3
2

)m⌉
, then f (m + s) ≥ 2m.

Proof.

Rm

Q00 Q01 Q10

I Take a copy of Rm. Each path label occurs
at most 2

(
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I Fix x ∈ {0, 1}m and let Lx be the set of
leaves in Rm that are endpoints of a path
with path label x .

I For each u ∈ Lx , arbitrarily choose a distinct
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I Because |Lx | ≤ 2
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3
2

)m ≤ 2s , enough
bitstrings are available.

I At each u ∈ Lx , attach a copy of Qy(u).

I Repeat for each x ∈ {0, 1}m.
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1

lg 3 ≈ 1.54856



Upper Bound: Overview

I To obtain an upper bound on f (n), we argue that every
ternary tree of depth n contains a binary subtree that uses few
path labels.

I Upper bound uses several lemmas.
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Upper Bound: Monochromatic Subtree Lemma

Lemma (Monochromatic Subtree Lemma; folklore?)

Let T be a ternary tree in which each leaf is colored red or blue.
There exists a binary subtree S ⊆ T such that all leaves in S share
a common color.

Proof.
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Upper Bound: Orthogonal Partitions

I Let Υ be a finite ground set.

Definition

I A pair of partitions {X ,X} and {Y ,Y } of Υ is α-orthogonal
if all four of the cross intersections X ∩Y , X ∩Y , X ∩Y , and
X ∩ Y have size at least α |Υ|4 .

I A family of partitions F of Υ is α-orthogonal if each pair of
(distinct) partitions in Υ is α-orthogonal.
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Upper Bound: Orthogonal Family Lemma

Lemma (Orthogonal Family Lemma)

If |Υ| = t and 0 ≤ α ≤ 1, then there exists an α-orthogonal family
of partitions F of Υ with

|F| ≥

⌊√
2

2
e

(1−α)2

16
t

⌋
.

Proof (sketch).

I Let r =

⌊√
2

2 e
(1−α)2

16
t

⌋
.

I For each 1 ≤ j ≤ r , choose a subset Xj ⊆ Υ uniformly and
independently at random.

I Let F = {{Xj ,Xj} | 1 ≤ j ≤ r}.
I Chernoff bound: F is α-orthogonal with positive probability.
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Upper Bound: Binary Subtrees Lemma (1)

Lemma (Binary Subtrees Lemma (1))

Let T1,T2, . . . ,Tk be ternary trees of depth n and let Υ = {0, 1}n.

If there exists an α-orthogonal family of partitions F of Υ with
|F| > 2k−1, then there exists binary subtrees S1,S2, . . . ,Sn with
Sj ⊆ Tj such that

|{x ∈ Υ | x is a path label in some Sj}| ≤
(
1− α

4

)
2n.

Proof.

T1 T2 T3 T4

T1 T2 T3 T4 {X1, X1}

T1 T2 T3 T4 {X2, X2}

T1 T2 T3 T4 {X3, X3}

T1 T2 T3 T4 {X4, X4}

T1 T2 T3 T4 {X5, X5}
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I Color a leaf u in Tj red if the path
label ending at u is in X1, and blue
otherwise.

I Apply Monochromatic Subtree
Lemma.
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I F is large, so some pair {X ,X}
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ptn. of {T1, . . . ,Tk}.
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I If Tj is red under {X ,X}, then Tj

has a binary subtree Sj in which
every path label is in X .

I If Tj is blue under {Y ,Y }, then Tj

has a binary subtree Sj in which
every path label is in Y .
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4 2n.
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Upper Bound: Binary Subtrees Lemma (2)

Setting α = 1/2 in the Orthogonal Family Lemma and applying
the Binary Subtrees Lemma (1) yields:

Lemma (Binary Subtrees Lemma (2))

Let T1, . . . ,Tk be ternary trees of depth n ≥ 6 + lg k, and let
Υ = {0, 1}n. There exist binary subtrees S1, . . . ,Sk with Sj ⊆ Tj

such that

|{x ∈ Υ | x is a path label in some Sj}| ≤
(

7

8

)
2n.

The assumption n ≥ 6 + lg k is tight up to an additive constant.
Indeed, if k = 2n:

0 0 0

00 0 00 0 00 0

Q00

0 0 0

11 1 11 1 11 1

Q01

1 1 1

00 0 00 0 00 0

Q10

1 1 1

11 1 11 1 11 1

Q11
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Upper Bound

Theorem
Let c1 =

√
lg(16/15) ≈ 0.3051 and c2 = 2c1

√
540−1 ≈ 68.156. If

n ≥ 0, then f (n) ≤ c22
n−c1

√
n.

Proof (sketch).

T

T ′

T1 T2 T3
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T

T ′
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I Let T be a ternary tree with depth n.

I Let T ′ be the ternary subtree of T up to
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n.

I Obtain a binary subtree S ′ ⊆ T ′ that uses
few path labels.
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I Fix x ∈ {0, 1}m and let Lx be the set of
leaves in S ′ that are endpoints of a path
with path label x .

I Two cases: if Lx is large, then extend S ′

at vertices in Lx arbitrarily.

I If Lx is small, apply Binary Subtrees
Lemma (2) to extend S ′ at vertices in Lx .
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Summary & Open Problems

Theorem
There exist positive constants c1 and c2 such that

2
n−3
lg 3 ≤ f (n) ≤ c12

n−c2
√

n.

Corollary

1.54856 ≈ 2
1

lg 3 ≤ lim
n→∞

(f (n))1/n ≤ 2.

Open Problems

I Improve the bounds on f (n) and limn→∞(f (n))1/n.

I Is it true that limn→∞(f (n))1/n < 2?

I For each p < q, consider the analogous problem on
{0, 1, . . . , p − 1}-edge-labeled perfect q-ary trees. Nothing is
known except our results for (p, q) = (2, 3).
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