Binary Subtrees with Few Path Labels

Kevin Milans (milans@uiuc.edu) Joint with R. Downey, N. Greenberg, and C. Jockusch

University of Illinois at Urbana-Champaign

SIAM Discrete Math 2008 Burlington, VT 19 June 2008

Red Downey Round Greenberg Carl Sockasen

December 2007: Downey, Greenberg, and Jockusch reduce a question in computability theory to a combinatorial problem.

- 日本 - 4 日本 - 4 日本 - 日本

Rod Downey Noam Greenberg Carl Jockusch

- December 2007: Downey, Greenberg, and Jockusch reduce a question in computability theory to a combinatorial problem.
- ► The computability question: "Is it true that every Π⁰₁ class of positive measure is Medvedev-reducible to DNR₃?"

December 2007: Downey, Greenberg, and Jockusch reduce a

- question in computability theory to a combinatorial problem.
- The computability question: "Is it true that every Π⁰₁ class of positive measure is Medvedev-reducible to DNR₃?"
- February 2008: Jockusch tells me about the combinatorial problem and the motivating computability theory question.

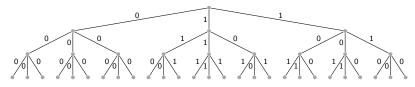
December 2007: Downey, Greenberg, and Jockusch reduce a

- question in computability theory to a combinatorial problem.
- ► The computability question: "Is it true that every Π⁰₁ class of positive measure is Medvedev-reducible to DNR₃?"
- February 2008: Jockusch tells me about the combinatorial problem and the motivating computability theory question.
- March, April 2008: Results on the combinatorial problem yield a negative answer to the computability question.

Rod Downey Noam Greenberg Carl Jockusch

- December 2007: Downey, Greenberg, and Jockusch reduce a question in computability theory to a combinatorial problem.
- ► The computability question: "Is it true that every Π⁰₁ class of positive measure is Medvedev-reducible to DNR₃?"
- February 2008: Jockusch tells me about the combinatorial problem and the motivating computability theory question.
- March, April 2008: Results on the combinatorial problem yield a negative answer to the computability question.

▶ June 2008: Joint paper in preparation.

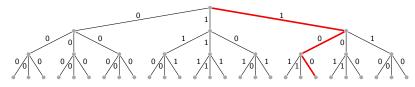


Ternary tree T with depth n = 3.

• Let T be a $\{0,1\}$ -edge-labeled perfect ternary tree of depth n.

・ロト ・聞ト ・ヨト ・ヨト

э

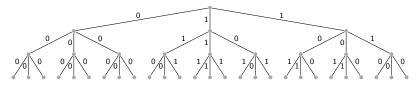


This path has path label 100.

- Let T be a $\{0,1\}$ -edge-labeled perfect ternary tree of depth n.
- Each path from the root to a leaf gives a path label in $\{0,1\}^n$.

(日)、

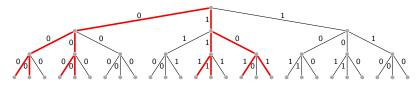
э



Ternary tree T with depth n = 3.

- Let T be a $\{0,1\}$ -edge-labeled perfect ternary tree of depth n.
- ▶ Each path from the root to a leaf gives a path label in {0,1}ⁿ.
- Let f(T) be the min., over all perfect binary subtrees S ⊆ T of depth n, of the number of path labels along paths in S.

(日)、

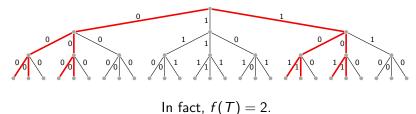


This subtree contains 3 path labels, so $f(T) \leq 3$.

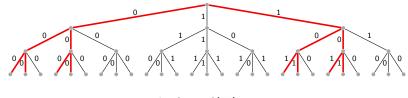
- Let T be a $\{0,1\}$ -edge-labeled perfect ternary tree of depth n.
- ▶ Each path from the root to a leaf gives a path label in {0,1}ⁿ.
- Let f(T) be the min., over all perfect binary subtrees S ⊆ T of depth n, of the number of path labels along paths in S.

イロト 不得 トイヨト イヨト

-

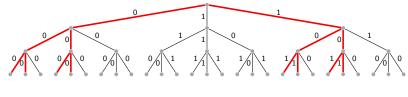


- ▶ Let T be a $\{0,1\}$ -edge-labeled perfect ternary tree of depth n.
- Each path from the root to a leaf gives a path label in $\{0,1\}^n$.
- Let f(T) be the min., over all perfect binary subtrees S ⊆ T of depth n, of the number of path labels along paths in S.



In fact, f(T) = 2.

- Let T be a $\{0,1\}$ -edge-labeled perfect ternary tree of depth n.
- ▶ Each path from the root to a leaf gives a path label in {0,1}ⁿ.
- Let f(T) be the min., over all perfect binary subtrees S ⊆ T of depth n, of the number of path labels along paths in S.
- ▶ Let f(n) be the max., over all {0,1}-edge-labeled perfect ternary trees T of depth n, of f(T).



In fact, f(T) = 2.

- Let T be a $\{0,1\}$ -edge-labeled perfect ternary tree of depth n.
- ▶ Each path from the root to a leaf gives a path label in {0,1}ⁿ.
- Let f(T) be the min., over all perfect binary subtrees S ⊆ T of depth n, of the number of path labels along paths in S.
- Let f(n) be the max., over all {0,1}-edge-labeled perfect ternary trees T of depth n, of f(T).
- From now on, all trees are perfect and {0,1}-edge-labeled; all subtrees have full depth.

Main Result

Theorem

There exist positive constants c_1 and c_2 such that

$$2^{\frac{n-3}{\lg 3}} \leq f(n) \leq c_1 2^{n-c_2\sqrt{n}}.$$

Main Result

Theorem

There exist positive constants c_1 and c_2 such that

$$2^{\frac{n-3}{\lg 3}} \leq f(n) \leq c_1 2^{n-c_2\sqrt{n}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Corollaries

$$\lim_{n\to\infty}\frac{f(n)}{2^n}=0$$

Main Result

Theorem

There exist positive constants c_1 and c_2 such that

$$2^{\frac{n-3}{\lg 3}} \leq f(n) \leq c_1 2^{n-c_2\sqrt{n}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Corollaries

•
$$\lim_{n \to \infty} \frac{f(n)}{2^n} = 0$$

• 1.54856 $\approx 2^{\frac{1}{\lg 3}} \leq \lim_{n \to \infty} (f(n))^{1/n} \leq 2$

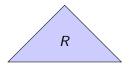
Proposition

If r and s are non-negative integers, then $f(r+s) \ge f(r)f(s)$.

Proposition

If r and s are non-negative integers, then $f(r+s) \ge f(r)f(s)$.

Proof.



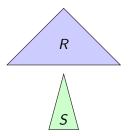
► Let R be a ternary tree of depth r which maximizes f(R).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition

If r and s are non-negative integers, then $f(r+s) \ge f(r)f(s)$.

Proof.

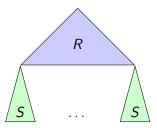


- ► Let R be a ternary tree of depth r which maximizes f(R).
- Let S be a ternary tree of depth s which maximizes f(S).

Proposition

If r and s are non-negative integers, then $f(r+s) \ge f(r)f(s)$.

Proof.



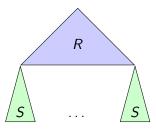
- ► Let R be a ternary tree of depth r which maximizes f(R).
- Let S be a ternary tree of depth s which maximizes f(S).

• Attach a copy of S to each leaf of R.

Proposition

If r and s are non-negative integers, then $f(r+s) \ge f(r)f(s)$.

Proof.

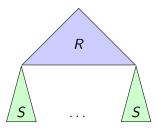


- ► Let R be a ternary tree of depth r which maximizes f(R).
- ► Let S be a ternary tree of depth s which maximizes f(S).
- Attach a copy of S to each leaf of R.
- Every binary subtree contains at least f(r)f(s) path labels.

Proposition

If r and s are non-negative integers, then $f(r+s) \ge f(r)f(s)$.

Proof.



- ► Let R be a ternary tree of depth r which maximizes f(R).
- ► Let S be a ternary tree of depth s which maximizes f(S).
- Attach a copy of S to each leaf of R.
- Every binary subtree contains at least f(r)f(s) path labels.

Corollary

$$\lim_{n\to\infty} (f(n))^{1/n} = \sup\left\{ (f(n))^{1/n} \mid n \ge 1 \right\}$$

Lower Bound: Overview

To obtain a lower bound on f(n), we construct a ternary tree in which every binary subtree has many path labels.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lower Bound: Overview

To obtain a lower bound on f(n), we construct a ternary tree in which every binary subtree has many path labels.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The construction uses two different kinds of trees.

Proposition

Let $a_0 = 1$ and $a_n = \lceil 3a_{n-1}/2 \rceil$ for $n \ge 0$. If $n \ge 0$, then there exists a ternary tree R_n of depth n in which each path label occurs at most a_n times.

Proposition

Let $a_0 = 1$ and $a_n = \lceil 3a_{n-1}/2 \rceil$ for $n \ge 0$. If $n \ge 0$, then there exists a ternary tree R_n of depth n in which each path label occurs at most a_n times.

Proof.

By induction on *n*. Extend R_{n-1} to R_n as follows.

Proposition

Let $a_0 = 1$ and $a_n = \lceil 3a_{n-1}/2 \rceil$ for $n \ge 0$. If $n \ge 0$, then there exists a ternary tree R_n of depth n in which each path label occurs at most a_n times.

Proof.

By induction on *n*. Extend R_{n-1} to R_n as follows.

For each x ∈ {0,1}ⁿ⁻¹, let L_x be the set of leaves in R_{n-1} that are endpoints of paths with path label x. Note that |L_x| ≤ a_{n-1}.

Proposition

Let $a_0 = 1$ and $a_n = \lceil 3a_{n-1}/2 \rceil$ for $n \ge 0$. If $n \ge 0$, then there exists a ternary tree R_n of depth n in which each path label occurs at most a_n times.

Proof.

By induction on *n*. Extend R_{n-1} to R_n as follows.

- For each x ∈ {0,1}ⁿ⁻¹, let L_x be the set of leaves in R_{n-1} that are endpoints of paths with path label x. Note that |L_x| ≤ a_{n-1}.
- ▶ Of the 3|L_x| edges in R_n below vertices in L_x, arbitrarily choose [3|L_x|/2] to have label 0; the remaining [3|L_x|/2] edges are labeled 1.

Proposition

Let $a_0 = 1$ and $a_n = \lceil 3a_{n-1}/2 \rceil$ for $n \ge 0$. If $n \ge 0$, then there exists a ternary tree R_n of depth n in which each path label occurs at most a_n times.

Proof.

By induction on *n*. Extend R_{n-1} to R_n as follows.

- For each x ∈ {0,1}ⁿ⁻¹, let L_x be the set of leaves in R_{n-1} that are endpoints of paths with path label x. Note that |L_x| ≤ a_{n-1}.
- ▶ Of the 3|L_x| edges in R_n below vertices in L_x, arbitrarily choose [3|L_x|/2] to have label 0; the remaining [3|L_x|/2] edges are labeled 1.

In R_n , a path label $x \in \{0,1\}^n$ occurs at most $\lceil 3a_{n-1}/2 \rceil$ times.

Proposition

Let $a_0 = 1$ and $a_n = \lceil 3a_{n-1}/2 \rceil$ for $n \ge 0$. If $n \ge 0$, then there exists a ternary tree R_n of depth n in which each path label occurs at most a_n times.

Remark

The trees R_n are best possible: in each ternary tree of depth n, some path label occurs at least a_n times.

Proposition

Let $a_0 = 1$ and $a_n = \lceil 3a_{n-1}/2 \rceil$ for $n \ge 0$. If $n \ge 0$, then there exists a ternary tree R_n of depth n in which each path label occurs at most a_n times.

Remark

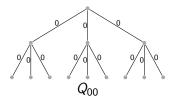
The trees R_n are best possible: in each ternary tree of depth n, some path label occurs at least a_n times.

Corollary

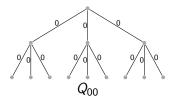
If $n \ge 0$, then there exists a ternary tree R_n of depth n in which each path label occurs at most $2\left(\frac{3}{2}\right)^n$ times.

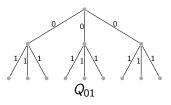
► For each bitstring y, let Q_y be the ternary tree labeled so that all paths in Q_y have the same path label y.

► For each bitstring y, let Q_y be the ternary tree labeled so that all paths in Q_y have the same path label y.



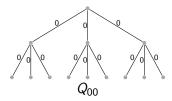
► For each bitstring y, let Q_y be the ternary tree labeled so that all paths in Q_y have the same path label y.

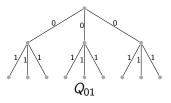




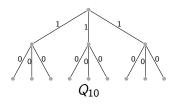
イロト イポト イヨト イヨト

► For each bitstring y, let Q_y be the ternary tree labeled so that all paths in Q_y have the same path label y.

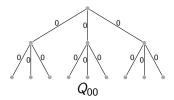


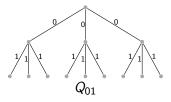


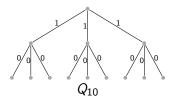
イロト イポト イヨト イヨト

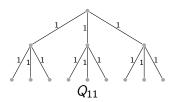


► For each bitstring y, let Q_y be the ternary tree labeled so that all paths in Q_y have the same path label y.









Lemma

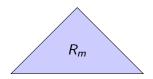
If $m \ge 0$ and $s = \left\lceil \lg 2 \left(\frac{3}{2}\right)^m \right\rceil$, then $f(m+s) \ge 2^m$.

Lemma If $m \ge 0$ and $s = \left\lceil \lg 2 \left(\frac{3}{2}\right)^m \right\rceil$, then $f(m + s) \ge 2^m$. Proof.

► Take a copy of R_m. Each path label occurs at most 2 (³/₂)^m times.

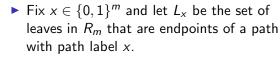
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

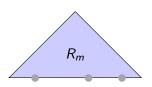
э



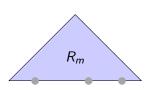
Lemma If $m \ge 0$ and $s = \left\lceil \lg 2 \left(\frac{3}{2}\right)^m \right\rceil$, then $f(m + s) \ge 2^m$. Proof.

Take a copy of R_m. Each path label occurs at most 2 (³/₂)^m times.



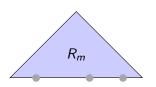


Lemma If $m \ge 0$ and $s = \left\lceil \lg 2 \left(\frac{3}{2}\right)^m \right\rceil$, then $f(m + s) \ge 2^m$. Proof.



- ► Take a copy of R_m . Each path label occurs at most $2\left(\frac{3}{2}\right)^m$ times.
- Fix x ∈ {0,1}^m and let L_x be the set of leaves in R_m that are endpoints of a path with path label x.
- For each u ∈ L_x, arbitrarily choose a distinct bitstring y(u) ∈ {0,1}^s.

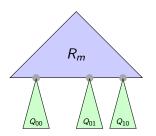
Lemma If $m \ge 0$ and $s = \left\lceil \lg 2 \left(\frac{3}{2}\right)^m \right\rceil$, then $f(m + s) \ge 2^m$. Proof.



- ► Take a copy of R_m . Each path label occurs at most $2\left(\frac{3}{2}\right)^m$ times.
- Fix x ∈ {0,1}^m and let L_x be the set of leaves in R_m that are endpoints of a path with path label x.
- For each u ∈ L_x, arbitrarily choose a distinct bitstring y(u) ∈ {0,1}^s.

▶ Because |L_x| ≤ 2 (³/₂)^m ≤ 2^s, enough bitstrings are available.

Lemma If $m \ge 0$ and $s = \left\lceil \lg 2 \left(\frac{3}{2}\right)^m \right\rceil$, then $f(m + s) \ge 2^m$. Proof.

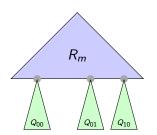


- ► Take a copy of R_m . Each path label occurs at most $2\left(\frac{3}{2}\right)^m$ times.
- Fix x ∈ {0,1}^m and let L_x be the set of leaves in R_m that are endpoints of a path with path label x.
- For each u ∈ L_x, arbitrarily choose a distinct bitstring y(u) ∈ {0,1}^s.

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

- ▶ Because |L_x| ≤ 2 (³/₂)^m ≤ 2^s, enough bitstrings are available.
- At each $u \in L_x$, attach a copy of $Q_{y(u)}$.

Lemma If $m \ge 0$ and $s = \left\lceil \lg 2 \left(\frac{3}{2}\right)^m \right\rceil$, then $f(m + s) \ge 2^m$. Proof.



- Take a copy of R_m . Each path label occurs at most $2\left(\frac{3}{2}\right)^m$ times.
- Fix x ∈ {0,1}^m and let L_x be the set of leaves in R_m that are endpoints of a path with path label x.
- For each u ∈ L_x, arbitrarily choose a distinct bitstring y(u) ∈ {0,1}^s.

A D > A D > A D > A D >

- ▶ Because |L_x| ≤ 2 (³/₂)^m ≤ 2^s, enough bitstrings are available.
- At each $u \in L_x$, attach a copy of $Q_{y(u)}$.
- Repeat for each $x \in \{0, 1\}^m$.

Lemma If $m \ge 0$ and $s = \left\lceil \lg 2 \left(\frac{3}{2}\right)^m \right\rceil$, then $f(m + s) \ge 2^m$.

Theorem If $n \ge 0$, then $f(n) \ge 2^{\frac{n-3}{\lg 3}}$.

Lemma If $m \ge 0$ and $s = \left\lceil \lg 2 \left(\frac{3}{2}\right)^m \right\rceil$, then $f(m+s) \ge 2^m$.

Theorem If $n \ge 0$, then $f(n) \ge 2^{\frac{n-3}{\lg 3}}$.

Proof (sketch).

Either *n* or n-1 is of the form $m + \lceil \lg 2 \left(\frac{3}{2}\right)^m \rceil$ for some integer *m*, in which case the Lemma applies.

Lemma If $m \ge 0$ and $s = \left\lceil \lg 2 \left(\frac{3}{2}\right)^m \right\rceil$, then $f(m+s) \ge 2^m$.

Theorem If $n \ge 0$, then $f(n) \ge 2^{\frac{n-3}{\lg 3}}$.

Proof (sketch).

Either *n* or n-1 is of the form $m + \lceil \lg 2 \left(\frac{3}{2}\right)^m \rceil$ for some integer *m*, in which case the Lemma applies.

Corollary

$$\lim_{n\to\infty} (f(n))^{1/n} \ge 2^{\frac{1}{\lg 3}} \approx 1.54856$$

Upper Bound: Overview

To obtain an upper bound on f(n), we argue that every ternary tree of depth n contains a binary subtree that uses few path labels.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Upper Bound: Overview

To obtain an upper bound on f(n), we argue that every ternary tree of depth n contains a binary subtree that uses few path labels.

Upper bound uses several lemmas.

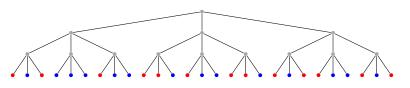
Lemma (Monochromatic Subtree Lemma; folklore?)

Let T be a ternary tree in which each leaf is colored red or blue. There exists a binary subtree $S \subseteq T$ such that all leaves in S share a common color.

Lemma (Monochromatic Subtree Lemma; folklore?)

Let T be a ternary tree in which each leaf is colored red or blue. There exists a binary subtree $S \subseteq T$ such that all leaves in S share a common color.

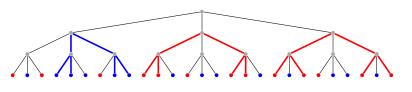
Proof.



Lemma (Monochromatic Subtree Lemma; folklore?)

Let T be a ternary tree in which each leaf is colored red or blue. There exists a binary subtree $S \subseteq T$ such that all leaves in S share a common color.

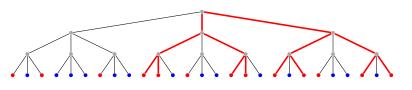
Proof.



Lemma (Monochromatic Subtree Lemma; folklore?)

Let T be a ternary tree in which each leaf is colored red or blue. There exists a binary subtree $S \subseteq T$ such that all leaves in S share a common color.

Proof.



Upper Bound: Orthogonal Partitions

• Let Υ be a finite ground set.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Upper Bound: Orthogonal Partitions

• Let Υ be a finite ground set.

Definition

▶ A pair of partitions $\{X, \overline{X}\}$ and $\{Y, \overline{Y}\}$ of Υ is α -orthogonal if all four of the cross intersections $X \cap Y$, $X \cap \overline{Y}$, $\overline{X} \cap Y$, and $\overline{X} \cap \overline{Y}$ have size at least $\alpha \frac{|\Upsilon|}{4}$.

Upper Bound: Orthogonal Partitions

► Let \u03c6 be a finite ground set.

Definition

- ▶ A pair of partitions $\{X, \overline{X}\}$ and $\{Y, \overline{Y}\}$ of Υ is α -orthogonal if all four of the cross intersections $X \cap Y$, $X \cap \overline{Y}$, $\overline{X} \cap Y$, and $\overline{X} \cap \overline{Y}$ have size at least $\alpha \frac{|\Upsilon|}{4}$.
- A family of partitions *F* of *Υ* is *α*-orthogonal if each pair of (distinct) partitions in *Υ* is *α*-orthogonal.

Lemma (Orthogonal Family Lemma) If $|\Upsilon| = t$ and $0 \le \alpha \le 1$, then there exists an α -orthogonal family of partitions \mathcal{F} of Υ with

$$|\mathcal{F}| \geq \left\lfloor \frac{\sqrt{2}}{2} e^{\frac{(1-\alpha)^2}{16}t} \right\rfloor$$

٠

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma (Orthogonal Family Lemma) If $|\Upsilon| = t$ and $0 \le \alpha \le 1$, then there exists an α -orthogonal family of partitions \mathcal{F} of Υ with

$$|\mathcal{F}| \geq \left\lfloor \frac{\sqrt{2}}{2} e^{\frac{(1-\alpha)^2}{16}t}
ight
floor$$

٠

Proof (sketch).

• Let
$$r = \left\lfloor \frac{\sqrt{2}}{2} e^{\frac{(1-\alpha)^2}{16}t} \right\rfloor$$
.

Lemma (Orthogonal Family Lemma) If $|\Upsilon| = t$ and $0 \le \alpha \le 1$, then there exists an α -orthogonal family of partitions \mathcal{F} of Υ with

$$|\mathcal{F}| \geq \left\lfloor \frac{\sqrt{2}}{2} e^{\frac{(1-lpha)^2}{16}t}
ight
floor$$

Proof (sketch).

• Let
$$r = \left\lfloor \frac{\sqrt{2}}{2} e^{\frac{(1-\alpha)^2}{16}t} \right\rfloor$$

For each 1 ≤ j ≤ r, choose a subset X_j ⊆ ↑ uniformly and independently at random.

Lemma (Orthogonal Family Lemma) If $|\Upsilon| = t$ and $0 \le \alpha \le 1$, then there exists an α -orthogonal family of partitions \mathcal{F} of Υ with

$$|\mathcal{F}| \geq \left\lfloor \frac{\sqrt{2}}{2} e^{\frac{(1-lpha)^2}{16}t}
ight
floor$$

Proof (sketch).

• Let
$$r = \left\lfloor \frac{\sqrt{2}}{2} e^{\frac{(1-\alpha)^2}{16}t} \right\rfloor$$

For each 1 ≤ j ≤ r, choose a subset X_j ⊆ ↑ uniformly and independently at random.

• Let
$$\mathcal{F} = \{\{X_j, \overline{X_j}\} \mid 1 \le j \le r\}.$$

Lemma (Orthogonal Family Lemma) If $|\Upsilon| = t$ and $0 \le \alpha \le 1$, then there exists an α -orthogonal family of partitions \mathcal{F} of Υ with

$$|\mathcal{F}| \geq \left\lfloor \frac{\sqrt{2}}{2} e^{\frac{(1-lpha)^2}{16}t}
ight
floor$$

Proof (sketch).

• Let
$$r = \left\lfloor \frac{\sqrt{2}}{2} e^{\frac{(1-\alpha)^2}{16}t} \right\rfloor$$

For each 1 ≤ j ≤ r, choose a subset X_j ⊆ ↑ uniformly and independently at random.

• Let
$$\mathcal{F} = \{\{X_j, \overline{X_j}\} \mid 1 \le j \le r\}.$$

• Chernoff bound: \mathcal{F} is α -orthogonal with positive probability.

Lemma (Binary Subtrees Lemma (1)) Let $T_1, T_2, ..., T_k$ be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$.

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

 $|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

 $|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$

(日) (四) (日) (日)

Proof.

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

 $|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$

(日) (四) (日) (日)

Proof.

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

 $|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$

Proof.

- Consider a ptn. $\{X_1, \overline{X_1}\} \in \mathcal{F}$.
- Color a leaf u in T_j red if the path label ending at u is in X₁, and blue otherwise.

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

$$|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$$

Proof.

 $\underbrace{\mathsf{T}_4}_{\{X_1,\overline{X_1}\}} \models \text{Consider a ptn. } \{X_1,\overline{X_1}\} \in \mathcal{F}.$

Color a leaf u in T_j red if the path label ending at u is in X₁, and blue otherwise.

 Apply Monochromatic Subtree Lemma.

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

 $|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$

Proof.

 $\overbrace{\tau_1} \overbrace{\tau_2} \overbrace{\tau_3} \overbrace{\tau_4} _{\{X_1, \overline{X_1}\}} \triangleright \text{Repeat for each ptn. in } \mathcal{F}.$

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

$$|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$$

(日) (四) (日) (日) (日)

Proof.

 $T_4 \{X_1, \overline{X_1}\}$

T₄

T٨

 $\{X_2, \overline{X_2}\}$

 $\{X_3, \overline{X_3}\}$

 T_3 \land T_3

T₂

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

$$|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$$

Proof.

 T_2

• Repeat for each ptn. in \mathcal{F} .

(日) (四) (日) (日) (日)

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

$$|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$$

Proof.

• Repeat for each ptn. in \mathcal{F} .

▲ □ ▶ ▲ @ ▶ ▲ ■ ▶ ▲ ■ ▶

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

 $|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$

Proof.

 $\{X_1, \overline{X_1}\}$ **T**₃ T₄ T_3 *T*₄ $\{X_2, \overline{X_2}\}$ $\{X_3, \overline{X_3}\}$ T2 Т3 T_4 T_1 T_2 T_3 T₄ $\{X_4, \overline{X_4}\}$ T_1 $\{X_5, \overline{X_5}\}$ T₂

▶ Repeat for each ptn. in *F*.
▶ *F* is large, so some pair {X, X} and {Y, Y} give the same red/blue ptn. of {T₁,..., T_k}.

▲ □ ▶ ▲ @ ▶ ▲ ■ ▶ ▲ ■ ▶

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

$$|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$$

Proof.

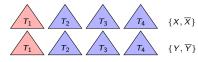
- ▶ Repeat for each ptn. in \mathcal{F} .
- $\mathcal{F} \text{ is large, so some pair } \{X, \overline{X}\} \\ \text{and } \{Y, \overline{Y}\} \text{ give the same red/blue} \\ \text{ptn. of } \{T_1, \dots, T_k\}.$

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

$$|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$$

Proof.



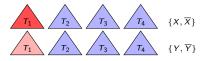
- ▶ Repeat for each ptn. in \mathcal{F} .
- F is large, so some pair {X, X} and {Y, Y} give the same red/blue ptn. of {T₁,..., T_k}.

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

$$|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$$

Proof.



► If T_j is red under {X, X}, then T_j has a binary subtree S_j in which every path label is in X.

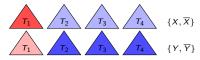
(日)

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

 $|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$

Proof.



- ► If T_j is red under {X, X}, then T_j has a binary subtree S_j in which every path label is in X.
- ► If T_j is blue under {Y, Y}, then T_j has a binary subtree S_j in which every path label is in Y.

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

$$|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$$

Proof.

 T_2

 $\overbrace{\tau_3} \overbrace{\tau_4} {}_{\{x,\overline{x}\}} Fixery path label in each S_j is in X \cup \overline{Y}.$

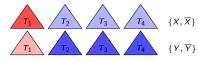
(日)

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

$$|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$$

Proof.



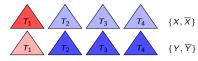
- Every path label in each S_j is in $X \cup \overline{Y}$.
- Set of path labels in {S₁,..., S_j} and X̄ ∩ Y are disjoint.

Lemma (Binary Subtrees Lemma (1))

Let T_1, T_2, \ldots, T_k be ternary trees of depth n and let $\Upsilon = \{0, 1\}^n$. If there exists an α -orthogonal family of partitions \mathcal{F} of Υ with $|\mathcal{F}| > 2^{k-1}$, then there exists binary subtrees S_1, S_2, \ldots, S_n with $S_j \subseteq T_j$ such that

$$|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(1 - \frac{\alpha}{4}\right) 2^n.$$

Proof.



- Every path label in each S_j is in $X \cup \overline{Y}$.
- Set of path labels in {S₁,..., S_j} and X̄ ∩ Y are disjoint.
- \mathcal{F} is α -orthogonal: $|\overline{X} \cap Y| \ge \frac{\alpha}{4}2^n$.

Setting $\alpha = 1/2$ in the Orthogonal Family Lemma and applying the Binary Subtrees Lemma (1) yields:

Setting $\alpha = 1/2$ in the Orthogonal Family Lemma and applying the Binary Subtrees Lemma (1) yields:

Lemma (Binary Subtrees Lemma (2))

Let T_1, \ldots, T_k be ternary trees of depth $n \ge 6 + \lg k$, and let $\Upsilon = \{0, 1\}^n$. There exist binary subtrees S_1, \ldots, S_k with $S_j \subseteq T_j$ such that

$$|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(\frac{7}{8}\right) 2^n.$$

Setting $\alpha = 1/2$ in the Orthogonal Family Lemma and applying the Binary Subtrees Lemma (1) yields:

Lemma (Binary Subtrees Lemma (2))

Let T_1, \ldots, T_k be ternary trees of depth $n \ge 6 + \lg k$, and let $\Upsilon = \{0, 1\}^n$. There exist binary subtrees S_1, \ldots, S_k with $S_j \subseteq T_j$ such that

$$|\{x \in \Upsilon \mid x \text{ is a path label in some } S_j\}| \leq \left(\frac{7}{8}\right)2^n.$$

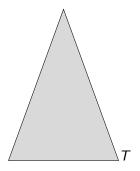
The assumption $n \ge 6 + \lg k$ is tight up to an additive constant. Indeed, if $k = 2^n$:

Theorem Let $c_1 = \sqrt{\lg(16/15)} \approx 0.3051$ and $c_2 = 2^{c_1\sqrt{540}-1} \approx 68.156$. If $n \ge 0$, then $f(n) \le c_2 2^{n-c_1\sqrt{n}}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem Let $c_1 = \sqrt{\lg(16/15)} \approx 0.3051$ and $c_2 = 2^{c_1\sqrt{540}-1} \approx 68.156$. If $n \ge 0$, then $f(n) \le c_2 2^{n-c_1\sqrt{n}}$.

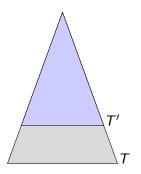
Proof (sketch).



• Let T be a ternary tree with depth n.

Theorem Let $c_1 = \sqrt{\lg(16/15)} \approx 0.3051$ and $c_2 = 2^{c_1\sqrt{540}-1} \approx 68.156$. If $n \ge 0$, then $f(n) \le c_2 2^{n-c_1\sqrt{n}}$.

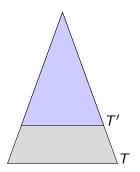
Proof (sketch).



- Let T be a ternary tree with depth n.
- Let T' be the ternary subtree of T up to depth $m \approx n c_1 \sqrt{n}$.

Theorem Let $c_1 = \sqrt{\lg(16/15)} \approx 0.3051$ and $c_2 = 2^{c_1\sqrt{540}-1} \approx 68.156$. If $n \ge 0$, then $f(n) \le c_2 2^{n-c_1\sqrt{n}}$.

Proof (sketch).

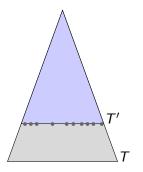


- Let T be a ternary tree with depth n.
- Let T' be the ternary subtree of T up to depth $m \approx n c_1 \sqrt{n}$.
- ► Obtain a binary subtree S' ⊆ T' that uses few path labels.

◆□> ◆□> ◆豆> ◆豆> □目

Theorem Let $c_1 = \sqrt{\lg(16/15)} \approx 0.3051$ and $c_2 = 2^{c_1\sqrt{540}-1} \approx 68.156$. If $n \ge 0$, then $f(n) \le c_2 2^{n-c_1\sqrt{n}}$.

Proof (sketch).



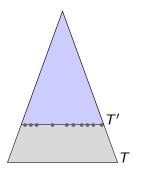
Fix x ∈ {0,1}^m and let L_x be the set of leaves in S' that are endpoints of a path with path label x.

イロト イポト イヨト イヨト

э

Theorem Let $c_1 = \sqrt{\lg(16/15)} \approx 0.3051$ and $c_2 = 2^{c_1\sqrt{540}-1} \approx 68.156$. If $n \ge 0$, then $f(n) \le c_2 2^{n-c_1\sqrt{n}}$.

Proof (sketch).

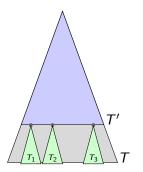


- Fix x ∈ {0,1}^m and let L_x be the set of leaves in S' that are endpoints of a path with path label x.
- Two cases: if L_x is large, then extend S' at vertices in L_x arbitrarily.

・ロト ・ 雪 ト ・ ヨ ト

Theorem Let $c_1 = \sqrt{\lg(16/15)} \approx 0.3051$ and $c_2 = 2^{c_1\sqrt{540}-1} \approx 68.156$. If $n \ge 0$, then $f(n) \le c_2 2^{n-c_1\sqrt{n}}$.

Proof (sketch).



- Fix x ∈ {0,1}^m and let L_x be the set of leaves in S' that are endpoints of a path with path label x.
- Two cases: if L_x is large, then extend S' at vertices in L_x arbitrarily.
- If L_x is small, apply Binary Subtrees
 Lemma (2) to extend S' at vertices in L_x.

Theorem

There exist positive constants c_1 and c_2 such that

$$2^{\frac{n-3}{\lg 3}} \leq f(n) \leq c_1 2^{n-c_2\sqrt{n}}$$

Corollary

$$1.54856 \approx 2^{\frac{1}{\lg 3}} \leq \lim_{n \to \infty} (f(n))^{1/n} \leq 2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem

There exist positive constants c_1 and c_2 such that

$$2^{\frac{n-3}{\lg 3}} \leq f(n) \leq c_1 2^{n-c_2\sqrt{n}}.$$

Corollary

$$1.54856 \approx 2^{\frac{1}{\lg 3}} \leq \lim_{n \to \infty} (f(n))^{1/n} \leq 2.$$

Open Problems

• Improve the bounds on f(n) and $\lim_{n\to\infty} (f(n))^{1/n}$.

Theorem

There exist positive constants c_1 and c_2 such that

$$2^{\frac{n-3}{\lg 3}} \leq f(n) \leq c_1 2^{n-c_2\sqrt{n}}$$

Corollary

$$1.54856 \approx 2^{\frac{1}{\lg 3}} \leq \lim_{n \to \infty} (f(n))^{1/n} \leq 2.$$

Open Problems

- Improve the bounds on f(n) and $\lim_{n\to\infty} (f(n))^{1/n}$.
- ▶ Is it true that $\lim_{n\to\infty} (f(n))^{1/n} < 2?$

Theorem

There exist positive constants c_1 and c_2 such that

$$2^{\frac{n-3}{\lg 3}} \leq f(n) \leq c_1 2^{n-c_2\sqrt{n}}.$$

Corollary

$$1.54856 \approx 2^{\frac{1}{\lg 3}} \leq \lim_{n \to \infty} (f(n))^{1/n} \leq 2.$$

Open Problems

- Improve the bounds on f(n) and $\lim_{n\to\infty} (f(n))^{1/n}$.
- ▶ Is it true that $\lim_{n\to\infty} (f(n))^{1/n} < 2?$
- For each p < q, consider the analogous problem on {0,1,..., p − 1}-edge-labeled perfect q-ary trees. Nothing is known except our results for (p,q) = (2,3).