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Abstract

Let F be a family of subsets of {1, . . . , n}. We say that F is P -free if the inclusion order on
F does not contain P as an induced subposet. The Turán function of P , denoted La∗(n, P ), is
the maximum size of a P -free family of subsets of {1, . . . , n}. We show that La∗(n, P ) ≤ (4r +
O(
√
r))
(

n
bn/2c

)
if P is an r-element poset of height at most 2. We also show that La∗(n, Sr) =

(r + O(
√
r))
(

n
bn/2c

)
where Sr is the standard example on 2r elements, and that La∗(n, 2[2]) ≤

(2.583 + o(1))
(

n
bn/2c

)
, where 2[2] is the 2-dimensional Boolean lattice.

1 Introduction

Turán-type problems ask for the largest objects that do not contain a particular substructure. We
seek the largest set families whose inclusion order does not contain a copy of a fixed poset.

A poset P is a subposet of Q if P ⊆ Q and x ≤P y if and only if x ≤Q y. We say that Q
contains a copy of P if P is a subposet of Q. If P and Q have the same elements and x ≤P y
implies that x ≤Q y, then Q is an extension of P . An antichain is a set of elements that are pairwise
incomparable, and a chain is a set of elements that are pairwise comparable. Let Kr denote the
r-element chain. The height of a poset P is the maximum size of a chain in P , and the width of P
is the maximum size of an antichain.

Let 2[n] denote the n-dimensional Boolean lattice; this is just the inclusion order on the subsets
of [n], where [n] = {1, . . . , n}. The levels of the Boolean lattice are the families of the form

([n]
k

)
,

where
(
S
k

)
denotes the subsets of S of size k. If F ⊆ 2[n], then F is a subposet and also ordered by

containment. If F does not contain a copy of P , we say that F is P -free. The Turán function of P ,
denoted La∗(n, P ), is the maximum size of a P -free family F with F ⊆ 2[n]. In 1928, Sperner [22]
proved that the maximum size of an antichain in 2[n] is

(
n
bn/2c

)
. In our language, Sperner’s theorem

states that La∗(n,K2) =
(

n
bn/2c

)
. Erdős [9] extended Sperner’s result to longer chains, showing

that La∗(n,Kr) is the sum of the r − 1 largest binomial coefficients in {
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
}. Hence

La∗(n,Kr) = (r − 1 + o(1))
(

n
bn/2c

)
for fixed r and growing n. Except when P is an antichain,

La∗(n, P ) is asymptotic to a positive integer multiple of
(

n
bn/2c

)
in all known cases. It is convenient

to define the Turán threshold, denoted π∗(P ), to be lim supn→∞ La∗(n, P )/
(

n
bn/2c

)
whenever the
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latter is finite. Clearly, La∗(n, P ) ≤ (π∗(P ) + o(1))
(

n
bn/2c

)
for each poset P . Erdős’s result implies

that π∗(Kr) = r − 1.
A well-studied variant of this problem uses a weaker notion of containment. The weak Turán

function of P , denoted La(n, P ), is the maximum size of a family of subsets F of [n] such that F
does not contain an extension of P . Under this weaker notion of containment, one must avoid P
as well all proper extensions of P , and so always La(n, P ) ≤ La∗(n, P ). For chains, the two notions
of containment coincide and equality holds. Many groups obtained bounds on the weak Turán
function for specialized poset families; see [15, 23, 7, 8, 10, 12] for results spanning nearly 25 years.
In 2009, Bukh [3] unified many previous results by showing that La(n, P ) ≤ (k − 1)

(
n
bn/2c

)
(1 +

O(1/n)) when P is a tree poset of height k. Perhaps the most celebrated special case is the
forbidden diamond problem, where P = 2[2]. Axenovich, Manske, and Martin [1] proved that
La(n, 2[2]) ≤ (2.284 + o(1))

(
n
bn/2c

)
. Griggs, Li, and Lu [11] reduced the constant to 2 + 3/11, which

is approximately 2.273. The current record of 2.25 is due to Kramer, Martin, and Young [17], and it
appears that new tools will be required to improve the bound further. The two largest levels show
that La(n, 2[2]) ≥ (2− o(1))

(
n
bn/2c

)
, and it is conjectured that La(n, 2[2]) is asymptotic to 2

(
n
bn/2c

)
.

Aside from the classic results of Sperner and Erdős, not much is known about Turán thresholds
in the induced case. In 2008, Carroll and Katona [5] proved that

(1 + 1/n+ Ω(1/n2))

(
n

bn/2c

)
≤ La∗(n, V2) ≤ (1 + 2/n+O(1/n2)

(
n

bn/2c

)
,

where V2 is the poset on elements {a, b1, b2} with a ≤ b1 and a ≤ b2, and no other relations.
It follows that π∗(V2) = 1. A tree poset is a poset whose Hasse diagram is a tree. In 2012,
Boehnlein and Jiang [2] gave an induced analogue of Bukh’s result. They showed that La∗(n, P ) ≤
(k− 1 +O(

√
lnn/n)

(
n
bn/2c

)
when P is a tree poset of height k. Since the largest k− 1 levels of 2[n]

are P -free when P has height k, it follows that π∗(P ) = k − 1.
In this article, we show that series-parallel posets and posets of height 2 have finite Turán

thresholds. We believe much more is true.

Conjecture 1. Every poset has a finite Turán threshold.

Conjecture 1 is equivalent to the statement that for each poset P , the Turán function satisfies
La∗(n, P ) = O(

(
n
bn/2c

)
) = O(2n/

√
n). It is known (see [14]) that for each poset P , there exists

α > 0 such that La∗(n, P ) = O(2n/nα). Recently, Methuku and Pálvölgyi [19] proved Conjecture 1
with an elegant proof that cleverly applies a theorem of Klazar and Marcus [16], generalizing the
well-known Marcus–Trados Theorem on forbidden permutation matrices [18].

In general, proving upper bounds on La∗(n, P ) appears to be more challenging than proving
upper bounds on La(n, P ). For example, the extension-containment analogue of Conjecture 1
follows directly from Erdős’s result, since La(n, P ) ≤ La(n,Kr) ≤ (r − 1 + o(1))

(
n
bn/2c

)
when P is

an r-element poset; see [4], [6] for improvements for general P . Recently, Grósz, Methuku, and
Tompkins [13] obtained a nice, sharp result: La(n, P ) = O(h log(r/h)), where h is the height of P .

To establish bounds on the Turán function and the Turán threshold, it is convenient to use a
weighting on 2[n] in which the set A ∈ 2[n] has weight 1/

(
n
|A|
)
. This weighting scheme has a nice

probabilistic interpretation. A maximal chain in 2[n] contains one set of each size in {0, . . . , n}. If
a maximal chain is chosen uniformly at random, then all sets of a particular size are equally likely
to appear in the chain. The weight of A ∈ 2[n] is equal to the probability that a randomly chosen
maximal chain in 2[n] contains A.
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When F ⊆ 2[n], we define the Lubell function of F , denoted `(F), to be the expected number
of times that a randomly chosen maximal chain in 2[n] meets F . Since `(F) =

∑
A∈F

1

( n
|A|)

, the

Lubell function may be viewed as an alternative measure of the size of F where sets in the middle
of the Boolean lattice have small weight and sets near the ends have large weight. The value
of the Lubell function at F is the Lubell mass of F . We define the Lubell threshold, denoted
λ∗(P ), to be lim supn→∞{`(F) : F ⊆ 2[n] and F is P -free}. Since `(F) ≥ |F|/

(
n
bn/2c

)
, it follows

that λ∗(P ) ≥ π∗(P ). For most of our results on the Lubell mass of P -free families, we do not need
n to be large. In these cases, we use the strong Lubell threshold, denoted Λ∗(P ), which is simply
sup{`(F) : F is P -free}. Clearly, Λ∗(P ) ≥ λ∗(P ) for all P , and if λ∗(P ) is finite, then so is Λ∗(P ).
In our language, Lubell gave an elegant proof of Erdős’s result by showing that Λ∗(Kr) = r − 1.
To establish our results, we prove that certain posets have finite Lubell thresholds. We propose a
strengthening of Conjecture 1.

Conjecture 2. Every poset has a finite Lubell threshold.

It appears that the techniques of Methuku and Pálvölgyi [19] do not imply Conjecture 2.
In Section 2, we prove that series-parallel posets have finite Lubell thresholds. In Section 3,

we prove that posets of height at most 2 have finite Lubell thresholds. We also show that r −
2 ≤ π∗(Sr) ≤ Λ∗(Sr) = r + O(

√
r), where Sr denotes the standard example on 2r elements. In

Section 4, we establish a preliminary upper bound for the induced forbidden diamond, showing
that π∗(2[2]) < 2.583.

2 Series-Parallel Posets

Given posets P and Q, the series construction with P below Q forms a new poset by taking the
disjoint union of P and Q and setting each element of P to be less than each element of Q.
Similarly, the parallel construction forms a new poset by taking the disjoint union of P and Q in
which each element of P is incomparable with each element of Q. The family of series-parallel
posets are defined inductively as follows. The single element poset is a series-parallel poset. If P
and Q are series-parallel posets, then the posets formed via the series construction and the parallel
construction are also series-parallel posets.

To establish these results, we need a refined notion of the Lubell function. In a poset P with
x ≤ y, the interval [x, y] is {z ∈ P : x ≤ z ≤ y}. When F ⊆ 2[n] and I is an interval in 2[n], we
define `(F ; I) to be the expected number of times that a random, maximal chain in I meets F . It
is convenient to define `−A(F) to be `(F ; [∅, A]) and `+A(F) to be `(F ; [A, [n]]).

Proposition 1. Let F be a nonempty family of subsets of [n] and let p be the probability that a
random maximal chain from ∅ to [n] meets at least one set in F . There exists A,A′ ∈ F such that
`+A(F) ≥ `(F)/p and `−A′(F) ≥ `(F)/p.

Proof. Let X be the number of times that a random maximal chain C from ∅ to [n] meets F , and
for each A ∈ F , let EA be the event that min{C∩F} = A, and let E0 be the event that C∩F = ∅.
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Note that E0 and the events in {EA : A ∈ F} partition the space of all maximal chains. Therefore

`(F) = E[X] = E[X|E0] · Pr[E0] +
∑
A∈F

E[X|EA] · Pr[EA]

= 0 · (1− p) +
∑
A∈F

`+A(F) · Pr[EA]

≤ max
A∈F
{`+A(F)}

∑
A∈F

Pr[EA]

= max
A∈F
{`+A(F)}p.

The second statement follows by symmetry.

A family F ⊆ 2[n] is upwardly α-shallow if `+A(F) ≤ α for each A ∈ F . Similarly, F is
downwardly α-shallow if `−A(F) ≤ α for each A ∈ F . We say that F is α-shallow if it is upwardly
α-shallow or downwardly α-shallow.

Corollary 1. If F is α-shallow, then `(F) ≤ α.

Proof. By symmetry, we may assume that F is upwardly α-shallow. By Proposition 1, there exists
A ∈ F such that `+A(F) ≥ `(F). Since F is upwardly α-shallow, it must be that `+A(F) ≤ α.

If x is an element in P , we define the open downset of x, denoted DP (x), to be {y ∈ P : y < x}
and the closed downset of x, denoted DP [x], to be D(x)∪{x}. Similarly, we denote the open upset
of x by UP (x) and closed upset of x by UP [x]. In each of these, we may omit the subscript when
P is clear from context.

Lemma 1. Let P1 and P2 be posets and let P be the poset obtained by introducing a new element
u, setting all elements of P1 to be below u, and all elements of P2 to be above u. If Λ∗(P1) and
Λ∗(P2) are finite, then so is Λ∗(P ) and Λ∗(P ) ≤ Λ∗(P1) + Λ∗(P2) + 2.

Proof. Let α1 = Λ∗(P1), α2 = Λ∗(P2), and let F ⊆ 2[n] satisfy `(F) > α1 + α2 + 2. We show
that F contains a copy of P . Let F1 = {A ∈ F : `−A(F) ≤ α1 + 1}, and note that F1 is a
downwardly (α1 + 1)-shallow set. By Corollary 1, we have that `(F1) ≤ α1 + 1. Similarly, let
F2 = {A ∈ F : `+A(F) ≤ α2 + 1}, and note that Corollary 1 implies that `(F2) ≤ α2 + 1.

Let F ′ = F − (F1 ∪ F2). We have that `(F ′) ≥ `(F)− `(F1)− `(F2) > (α1 + α2 + 2)− (α1 +
1)− (α2 + 1) = 0. It follows that F ′ is nonempty. Let A ∈ F ′; we obtain a copy of P in which A
is identified with u.

Since A 6∈ F1, we have that `−A(F) > α1 + 1 and hence `−A(F − {A}) = `−A(F)− 1 > α1. Since
Λ∗(P1) = α1, it follows that DF (A) contains a copy of P1. Similarly, UF (A) contains a copy of
P2.

Note that Lemma 1 is sharp when P1 and P2 are chains. We say that F ⊆ 2[n] is balanced if
`(F ; I) ≤ `(F) for each interval I in 2[n]. When we wish to find induced subposets of F under the
assumption `(F) > α, we may assume that F is balanced. Indeed, for a general family F ⊆ 2[n],
choose an interval [A,B] to maximize `(F ; [A,B]), and let F ′ = {C − A : C ∈ F ∩ [A,B]}. Note
that F ′ ⊆ 2B−A, and relative to this subcube, F ′ has Lubell mass `(F , [A,B]), which is at least
`(F). By the selection of [A,B], the family F ′ is balanced relative to 2B−A.

4



For disjoint sets A,B ⊆ [n], we define RBA to be the collection of all sets in 2[n] that contain A
but are disjoint from B. Note that RBA is just the interval [A, [n] − B] and is hence a subcube of
dimension n − |A| − |B|. When A or B is small, we may omit the set notation and write Rkij for

R
{k}
{i,j} or simply Ri for R∅

{i}.

Lemma 2. Let P1 and P2 be posets and let P be the disjoint union of P1 and P2 with each
element of P1 incomparable with each element of P2. If Λ∗(P1) and Λ∗(P2) are well defined, then
Λ∗(P ) ≤ max{Λ∗(P1),Λ

∗(P2)}+ 8.

Proof. Let α = max{Λ∗(P1),Λ
∗(P2)}. Let F be a family of subsets of [n] with `(F) > α + 8; we

may assume without loss of generality that F is balanced. We show that for some pair {i, j} ∈
(
[n]
2

)
,

both `(F ;Rji ) and `(F ;Rij) are larger than α. Since z1 and z2 are incomparable when z1 ∈ Rji and

z2 ∈ Rij , we obtain an induced copy of P with elements in P1 represented by elements in F ∩ Rji
and elements in P2 represented by elements in F ∩Rij .

For {i, j} ∈
(
[n]
2

)
, let θij = `(F ;Rij)+`(F ;Rji )+`(F ;Rij)+`(F ;Rij), and let θ =

∑
{i,j}∈([n]2 ) θij .

Note that {Rij , Rji , Rij , Rij} is a partition of 2[n] and therefore each A ∈ F contributes to exactly
one term in θij .

Consider A ∈ F , and let k = |A|. We compute the contribution of A to θ. There are
(
k
2

)
pairs

{i, j} such that A ∈ Rij , and each such term contributes 1/
(
n−2
k−2
)

to θ. There k(n− k) pairs {i, j}
such that A ∈ Rji ∪ Rij , and each such term contributes 1/

(
n−2
k−1
)

to θ. There are
(
n−k
2

)
pairs {i, j}

such that A ∈ Rij and each such term contributes 1/
(
n−2
k

)
to θ. Adding these, we find that the

contribution of A to θ is(
k

2

)
· 1(

n−2
k−2
) + k(n− k) · 1(

n−2
k−1
) +

(
n− k

2

)
· 1(

n−2
k

) .
When 2 ≤ k ≤ n− 2, this readily simplifies to 4

(
n
2

)
· 1/
(
n
k

)
, which is 4

(
n
2

)
times the contribution of

A to `(F). When k is outside this range, some of the coefficients are zero (and the corresponding
contributions are undefined). If k ∈ {1, n − 1}, the sum simplifies to 3

(
n
2

)
· 1/
(
n
1

)
, which is 3

(
n
2

)
times the contribution of A to `(F). Finally, when k ∈ {0, n}, the sum simplifies to

(
n
2

)
· 1/
(
n
0

)
,

which is
(
n
2

)
times the contribution of A to `(F). Since {A ∈ F : |A| ∈ {0, n}} contributes at most

2 to `(F) and {A ∈ F : |A| ∈ {1, n− 1}} also contributes at most 2 to `(F), it follows that

θ ≥ 2 ·
(
n

2

)
+ 2 · 3

(
n

2

)
+ (`(F)− 4) · 4

(
n

2

)
=

(
n

2

)
(4`(F)− 8).

Choose a pair {i, j} so that θij ≥ 4`(F) − 8. Because F is balanced, we have that each of the 4
terms in the sum defining θij is at most `(F). It follows that each term is at least `(F) − 8, and
`(F)− 8 > α.

3 Posets of Height 2

In this section, we show that Conjecture 2 holds for posets of height 2. To do so, we need a special
family of posets. Let Ur be the poset with antichains {a1, . . . , ar} and {bS : S ⊆ [r]} where aj ≤ bS
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a1 a2 a3

b∅ b{1} b{2} b{3} b{1,2} b{1,3} b{2,3} b{1,2,3}

Figure 1: U ′3

if and only if j ∈ S. The dual of a poset P is the poset Q on the same elements with x ≤Q y if and
only if y ≤P x. Let U ′r be the dual of Ur; this poset has the same elements but now bS ≤ aj if and
only if j ∈ S.

Next, we show that both Ur and U ′r are “universal” for posets of height 2 in the following sense.

Lemma 3. If P is an r-element poset of height at most 2, then P is a subposet of both Ur and U ′r.

Proof. It suffices to show that P is a subposet of U ′r, since P ′ ⊆ U ′r implies that P ⊆ Ur, where P ′

is the dual of P . Let x1, . . . , xr be the elements of P , indexed so that the set of maximal elements
of P is {x1, . . . , xm}. For 1 ≤ i ≤ m, we identify xi in P with ai in U ′r. For m + 1 ≤ i ≤ r, let
Si = {j ∈ [m] : xi ≤ xj} ∪ {i}, and we identify xi in P with bSi in U ′r. For m + 1 ≤ i, j ≤ r, we
have that i ∈ Sj if and only if i = j, and therefore the sets Sm+1, . . . , Sr are distinct.

By Lemma 3, to establish Conjecture 2 for posets of height 2, it suffices to show that each family
with sufficiently large Lubell mass contains Ur or U ′r. The following concept is key. Let F ⊆ 2[n]

and let A ∈ F . An element i ∈ A is a pivot of A if there exists j 6∈ A such that A− {i} ∪ {j} ∈ F .
We say that A is γ-flexible if it has at least γ|A| pivots. As it turns out, if each set in F is not too
large and F has no γ-flexible sets, then the Lubell function of F is bounded.

Lemma 4. Let γ and δ be a real numbers in the range [0, 1) and let F be a family of subsets of [n]
such that |A| ≤ δn for each A ∈ F . If F does not contain a γ-flexible set, then `(F) < 1+ 1

1−γ ln 1
1−δ .

Proof. Let Lk = F ∩
([n]
k

)
. If A ∈ Lk and i ∈ A but A − B 6= {i} for each B ∈ Lk, then A is the

only set in Lk that contains A− {i}. Since no set in F is γ-flexible, for each A ∈ Lk, there are at
least (1− γ)k indices i ∈ A such that A is the only set in Lk containing the (k − 1)-set A− {i}. It
follows that |Lk| · (1− γ)k ≤

(
n
k−1
)
. Therefore

`(F) =
∑

0≤k≤δn
|Lk| ·

1(
n
k

)
≤ 1 +

∑
1≤k≤δn

|Lk| ·
1(
n
k

)
≤ 1 +

∑
1≤k≤δn

1

1− γ
· k
(
n
k−1
)(

n
k

)
= 1 +

1

1− γ
∑

1≤k≤δn

1

n− k + 1

< 1 +
1

1− γ
ln

1

1− δ
.
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In most applications of Lemma 4, we set δ = 1/2. Let F ⊆ 2[n], and let T ⊆ [n]. The projection
of F onto T is the family {A ∩ T : A ∈ F}. To find a copy of U ′r in F , we first find a γ-flexible set
A such that `−A(F) is large. Then, we will find a particular structure in the projection of F onto
T . To force this structure, we will need the projection to have large Lubell mass.

Lemma 5. Let F be a family of subsets of [n], let T ⊆ [n] with |T | = t, and let F ′ be the projection
of F onto T . We have that `−T (F ′) ≥ t+1

n+1`(F).

Proof. It suffices to prove the lemma for the case t = n − 1, since the general case follows by
induction on n − t. Let x be the unique element in [n] − T . If A ∈ F ′, then at least one of
A,A ∪ {x} belongs to F . We may assume without loss of generality that both belong to F , since
adding the missing one does not change F ′ and increases `(F).

We compare the contribution of A to `−T (F ′) with the contribution of A and A ∪ {x} to `(F).
Let k = |A|, and note that the contribution of A to `−T (F ′) is 1/

(
n−1
k

)
, while the contribution of

A and A ∪ {x} to `(F) is 1/
(
n
k

)
+ 1/

(
n
k+1

)
. The lemma now follows from the identity 1/

(
n−1
k

)
=(

1/
(
n
k

)
+ 1/

(
n
k+1

))
n
n+1 .

For R ⊆ [n], the family F shatters R if the projection of F onto R is 2R. The VC-dimension
of F , denoted VCdim(F), is the maximum size of a shattered subset of [n]. The following classical
lemma has been known since the introduction of the VC-dimension (see [24, 20, 21]).

Lemma 6 (Shatter Function Lemma). If F ⊆ 2[n] and VCdim(F) < d, then |F| ≤
∑d−1

k=0

(
n
k

)
.

The bound in Lemma 6 is best possible, since {A ⊆ [n] : |A| ≤ d − 1} has VC-dimension
d− 1. Obtaining the largest Lubell mass of a family F with VCdim(F) < d is more subtle. Since
|F| ≤

∑d−1
k=0

(
n
k

)
implies that `(F) < 2d, we obtain the following corollary.

Corollary 2. If F ⊆ 2[n] and VCdim(F) < d, then `(F) < 2d.

Perhaps surprisingly, the bound in Corollary 2 is essentially best possible. For a positive integer
t, partition [n] into sets Z1, . . . , Zt of nearly equal size. Let G = {A ⊆ [n] : |A| > n−b(1− 1/t)dc},
let H be the family of all sets A ⊆ [n] such that |A∩Zi| < d/t for all i, and let F = G∪H. First, we

claim that VCdim(F) < d. Indeed, if R ∈
([n]
d

)
, then for some part Zi, we have that |R∩Zi| ≥ d/t.

Let S be a subset of R ∩ Zi of size dd/te. We show that if A ∈ F , then A ∩ R 6= S, which implies
that F does not shatter R. Suppose that A ⊆ [n] and A ∩R = S. Since A ∩R = S, we have that
S ⊆ A. Hence |A ∩ Zi| ≥ |S ∩ Zi| ≥ d/t, and so A 6∈ H. On the other hand, A is disjoint from
R− S, and |R− S| ≥ d− dd/te. Therefore |A| ≤ n− (d− dd/te) = n− b(1− 1/t)dc and hence also
A 6∈ G. Hence, VCdim(F) < d.

Note that `(G) = b(1− 1/t)dc and that `(H) =
∑

k pk, where pk is the probability that a
random k-set is in H. For k < d/t, we have that pk = 1. Also, pk ≥ 1 − tqk, where qk is the
probability that a random k-set meets a fixed set U of size dn/te in at least d/t points. Here, we
need a concentration inequality.

Lemma 7. Let U ⊆ [n], let γ = |U |/n, and let δ ≥ 0. If A is a random k-set and X = |A ∩ U |,
then

Pr[X ≥ (1 + δ)γk] ≤ e−
(δγ)2

2
k.
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Proof. We select A by iteratively choosing elements a1, . . . , ak from those in [n] not already selected.
Define Xi to be the random variable E[X|a1, . . . , ai]. Note that Xk = |A∩U | = X, X0 = E[X] = γk,
and X0, . . . , Xk is a martingale. Also, since altering any one of a1, . . . , ak changes |A ∩ U | by at
most 1, we have |Xi −Xi−1| ≤ 1. The lemma now follows from Azuma’s inequality.

Suppose that n ≥ 2t2 and k ≤ (1− 1/t)d. Let γ = |U |/n = dn/te/n, and note that γ ≤ 1
t + 1

n .
Since k ≤ (1 − 1/t)d ≤ 1

1+t/nd, we may set δ = d/(tγk) − 1 so that δ ≥ 0 and (1 + δ)γk = d/t.

Now, we compute that δγ = d
tk − γ ≥

d
t(1−1/t)d − γ = 1

t−1 − γ ≥
1
t−1 − (1t + 1

n) ≥ 1
2t2

. Therefore

Lemma 7 shows that qk ≤ e−
(δγ)2

2
k ≤ e−

1
8t4

k. When k ≥ d/t, this reduces to qk ≤ e−
1

8t5
d. Hence,

we have that

`(H) =
n∑
k=0

pk

≥

∑
k<d/t

1

+

 ∑
d/t≤k≤(1−1/t)d

1− tqk


≥ (1− 1/t)d− t

 ∑
d/t≤k≤(1−1/t)d

e−
1

8t5
d


≥ (1− 1/t)d− tde−

1
8t5

d.

For n sufficiently large, G and H are disjoint, and hence `(F) = `(G) + `(H) ≥ b(1− 1/t)dc+ (1−
1/t)d− tde−

1
8t5

d. Setting, for example, t = d1/6, we have that `(F) ≥ (2− o(1))d as d→∞.

Lemma 8. Let γ be a constant satisfying 0 < γ < 1. If F is a family of subsets of [n] and
`(F) > 4r/γ + 2 ln(2)/(1− γ) + 2, then F contains Ur or F contains U ′r.

Proof. Let F be a family of subsets of [n] with `(F) > 4r/γ + 2 ln(2)/(1 − γ) + 2. We define
F = {[n] − A : A ∈ F}. Note that F is the dual of F and `(F) = `(F). At least one of
{A ∈ F : |A| ≤ n/2} and {A ∈ F : |A| ≤ n/2} has Lubell mass at least `(F)/2. If the former
occurs, then we obtain a copy of U ′r in F . If the latter occurs, then we obtain a copy of U ′r in F ,
which immediately yields a copy of Ur in F . Let F1 = {A ∈ F : |A| ≤ n/2}. We may assume that
`(F1) ≥ `(F)/2.

Let F2 be the set of all A in F1 that are not γ-flexible, and let F3 be the set of all A in F1 such
that `−A(F1) ≤ 2r/γ. By Lemma 4, we have that `(F2) < 1 + ln 2/(1− γ). By Corollary 1, we have
that `(F3) ≤ 2r/γ. Note that

`(F1)− (`(F2) + `(F3)) > `(F)/2−
(

1 +
ln 2

1− γ
+

2r

γ

)
> 0

Hence F1 − (F2 ∪ F3) is non-empty.
Choose A ∈ F1 − (F2 ∪ F3) and let T be the set of all pivots in A. Note that |T | ≥ γ|A|

since A 6∈ F2. Let F ′ be the projection of the closed downset DF1 [A] onto T . Since A 6∈ F3, we

have that `−A(F1) > 2r/γ. By Lemma 5, we have that `−T (F ′) ≥ |T |+1
|A|+1`

−
A(F1) > γ`−A(F1) ≥ 2r. By

Corollary 2, we have that VCdim(F ′) ≥ r, and hence there is an r-set R such that R ⊆ T and F ′
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shatters R. For each S ⊆ R, there exists a set B′S ∈ F ′ such that B′S ∩R = S, and B′S extends to
a set BS ∈ DF1 [A] such that BS ∩ T = B′S .

Note that R ⊆ T and each element in T is a pivot of A. For each i ∈ R, find Ai ∈ F1 such that
Ai = (A− {i}) ∪ {j} for some j ∈ [n]. Since BS ⊆ A, and A− Ai = {i}, we have that BS ⊆ Ai if
and only if i 6∈ S. Therefore we obtain a copy of U ′r in which the maximal elements are {Ai : i ∈ R}
and the minimal elements are {BS : S ⊆ R}.

We are now able to prove our main theorem.

Theorem 1. If P is an r-element poset of height at most 2, then Λ∗(P ) ≤ 4r +
√

(32 ln 2)r + 6.

Proof. With c =
√

(ln 2)/2 ≈ 0.589 and γ = 1−c/
√
r, some algebra shows that 4r+

√
(32 ln 2)r+6 >

4r/γ + 2 ln(2)/(1− γ) + 2. Hence if F ⊆ 2[n] and `(F) > 4r+
√

(32 ln 2)r+ 6, then it follows from
Lemma 8 that F contains a copy of Ur or a copy of U ′r, and by Lemma 3 both of these contain a
copy of P .

We do not expect that Theorem 1 is sharp, and indeed, this technique sometimes gives better
bounds when specialized to particular posets. We examine one such family which shows that the
coefficient on the linear term cannot be reduced beyond 1/2.

3.1 Lubell and Turán Thresholds of Standard Examples

The standard example, denoted Sr, is a poset on 2r elements a1, . . . , ar and b1, . . . , br such that
{a1, . . . , ar} and {b1, . . . , br} are antichains and bj ≤ ai if and only if i 6= j. Note that the dual of
the standard example is itself.

To find copies of Sr, the full power of Corollary 2 is not necessary. Let F ⊆ 2[n] and let R ⊆ [n].
We say that F contains an R-system of private elements if F contains sets (Bi)i∈R such that for
each i, j ∈ R, we have i ∈ Bj if and only if i = j. Of course, if F shatters R, then one easily obtains
an R-system of private elements. As our next lemma shows, if we need only a system of private
elements, the required Lubell mass is reduced by a factor of 2.

Lemma 9. If F ⊆ 2[n] and `(F) > r, then there exists an r-set R such that F contains an R-system
of private elements.

Proof. By induction on r+n. If there exists a proper subcube [A,B] of 2[n] with `(F , [A,B]) ≥ `(F),
then we apply induction to the family F ∩ [A,B] in [A,B], and the obtained R-system of private
elements in [A,B] is valid in 2[n]. Hence, we may assume that `(F , [A,B]) < `(F) for each subcube
[A,B]. In particular, for each i ∈ [n], there is a set A ∈ F containing i, as otherwise we would have
`(F , Qi) ≥ `(F), where Qi is the subcube [∅, [n]− {i}].

If n = 0 or r = 0, then the statement holds trivially, so suppose that n ≥ 1 and r ≥ 1. Note
that `(F) = ε +

∑
i∈[n] `(F , Qi) where ε = 1 if [n] ∈ F and ε = 0 otherwise. It follows that there

exists j ∈ [n] such that `(F , Qj) ≥ `(F) − 1 > r − 1. Applied to the subcube Qj , it follows by
induction that F ∩Qj contains an R′-system of private elements (Bi)i∈R′ with |R′| = r−1. Setting
R = R′ ∪{j} and choosing Bj ∈ F so that j ∈ Bj , we obtain an R-system of private elements with
|R| = r.

Lemma 9 is sharp, since the family {∅} ∪ {A ⊆ [n] : |A| > n− (r − 1)} has Lubell mass r but
does not contain an R-system of private elements with |R| = r.
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Lemma 10. Let γ and δ be constants satisfying 0 < γ, δ < 1. If F ⊆ {A ⊆ [n] : |A| ≤ δn} and
`(F) > r/γ + 1

1−γ ln 1
1−δ + 1, then F contains Sr.

Proof. The proof is the same as in Lemma 8 with slight modifications. Let F1 be the set of all
A in F that are not γ-flexible, and let F2 be the set of all A in F such that `−A(F) ≤ r/γ. By
Lemma 4, we have that `(F1) < 1 + 1

1−γ ln 1
1−δ . By Corollary 1, we have that `(F2) ≤ r/γ. Since

`(F)− `(F1)− `(F2) > 0, there exists A ∈ F − (F1 ∪ F2).
Let T be the set of all pivots in A. Note that |T | ≥ γ|A| since A 6∈ F1. Let F ′ be the projection

of the closed downset DF [A] onto T . Since A 6∈ F2, we have that `−A(F) > r/γ. By Lemma 5,

we have that `−T (F ′) ≥ |T |+1
|A|+1`

−
A(F) > γ`−A(F) ≥ r. By Lemma 9, there is an R-system of private

elements (B′j)j∈R in F ′. Each B′j ∈ F ′ extends to a set Bj ∈ DF [A] such that Bj ∩ T = B′j .
Note that R ⊆ T and each element in T is a pivot of A. For each i ∈ R, find Ai ∈ F1 such that

Ai = (A − {i}) ∪ {j} for some j ∈ [n]. Since Bj ⊆ A and A − Ai = {i}, we have that Bj ⊆ Ai if
and only if i 6∈ Bj . Hence Bj ⊆ Ai if and only if j 6= i and {Ai : i ∈ R} and {Bj : j ∈ R} form a
copy of Sr.

Theorem 2. r − 2 ≤ π∗(Sr) ≤ Λ∗(Sr) ≤ 2r +
√

(16 ln 2)r + 11.

Proof. For the upper bound, let F be a subfamily of 2[n] with `(F) > 2r +
√

(16 ln 2)r + 11, and
define F+ = {A ∈ F : |A| ≥ n/2} and F− = {A ∈ F : |A| ≤ n/2}. Note that `(F+) ≥ `(F)/2 or
`(F−) ≥ `(F)/2. Set c =

√
ln 2 ≈ 0.833, γ = 1 − c/

√
r, and δ = 1/2. Some algebra shows that

`(F)/2 ≥ r+
√

(4 ln 2)r+ 5.5 > r/γ + 1
1−γ ln 1

1−δ + 1. If `(F−) ≥ `(F)/2, then F− contains a copy

of Sr by Lemma 10. Otherwise, we set F ′ = {[n]−A : A ∈ F+} and apply Lemma 10 to obtain a
copy of Sr in F ′. Since Sr is self-dual, this implies that F+ also contains a copy of Sr.

For the lower bound, we may assume that r ≥ 2. We show that if F is the union of r − 2
contiguous levels, then F does not contain a copy of Sr. Choosing the largest r − 2 levels, we
obtain the lower bound. Suppose that A1, . . . , Ar and B1, . . . , Br are subsets of [n] such that
Bj ⊆ Ai if and only i 6= j. Note that for each Bj , there exists an element bj ∈ [n] such that bj ∈ Bj
but bj 6∈ Bk for k 6= j, as otherwise Bj ⊆

⋃
k 6=j Bk ⊆ Aj . Since B1 ⊆ A2 and {b3, . . . , br} ⊆ A2−B1,

it follows that |A2| − |B1| = |A2 −B1| ≥ r − 2. Thus, it is not possible for both B1, A2 ∈ F if F is
the union of r − 2 contiguous levels.

Since Sr is a 2r-element poset of height 2, the lower bound in Theorem 2 shows that the
linear coefficient in Theorem 1 cannot be reduced beyond 1/2. While a large gap remains in our
bounds on the Lubell threshold of standard examples, we are able to determine the Turán threshold
asymptotically using one additional observation.

Lemma 11. If F is the family {A ⊆ [n] : |A| ≥ n/2 +
√

2n lnn}, then |F| ≤ 2n/n.

Proof. Let X be the size of a randomly chosen subset of [n]. By Azuma’s inequality, Pr[X ≥
n/2 + t] ≤ e

−t2
2n . It follows that |F| = 2nPr[X ≥ n/2 +

√
2n lnn}] ≤ 2n/n.

Theorem 3. r − 2 ≤ π∗(Sr) ≤ r + 2
√
r + 6

Proof. The lower bound is the same as in Theorem 2. For the upper bound, the case that r = 1 is
trivial since S1 is a 2-element antichain. Suppose that r ≥ 2 and that n is sufficiently large so that
n/2+

√
2n lnn ≤ (1−1/e)n ≈ 0.632n. Let F be a subfamily of 2[n] with |F| ≥ (r+2

√
r+6)

(
n
bn/2c

)
.

We show that F contains a copy of Sr.
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With δ = 1 − 1/e, let F ′ = {A ∈ F : |A| ≤ δn}. By Lemma 11, we have that |F ′| ≥
|F| − 2n/n ≥ (r + 2

√
r + 5)

(
n
bn/2c

)
and therefore `(F ′) ≥ r + 2

√
r + 5. Let γ = 1− 1/

√
r and note

that r+ 2
√
r+ 5 > r/γ+ 1

1−γ ln 1
1−δ + 1 for r ≥ 2. By Lemma 10, it follows that F ′ contains a copy

of Sr.

4 Lubell and Turán Thresholds of Small Boolean Lattices

Each n-element poset P is contained in the subset lattice with ground set P . Indeed, since x ≤ y
if and only if D[x] ⊆ D[y], the subset lattice contains a copy of P in which x ∈ P is represented
by D[x]. Consequently, Conjecture 1 is equivalent to the assertion that every Boolean lattice has
a finite Turán threshold, and Conjecture 2 is equivalent to the assertion that every Boolean lattice
has a finite Lubell threshold. In this section, we establish a finite Lubell threshold for 2[3] and
provide an preliminary bound on the Turán threshold for 2[2]. Our next bound follows naturally
from our results on standard examples.

Corollary 3. Λ∗(2[3]) ≤ 16.

Proof. First, we show that Λ∗(2[3]) = Λ∗(S3). Since S3 is a subposet of 2[3], it is immediate that
Λ∗(S3) ≤ Λ∗(2[3]). Note that if F ⊆ 2[n] and F is S3-free, then F ∪ {∅, [n]} is also S3-free. It
follows that if F is an S3-free family of subsets of [n] and F contains neither ∅ nor [n], then `(F) ≤
Λ∗(S3) − 2. Let F be a 2[3]-free family of subsets of [n]. Applying Proposition 1 twice, we obtain
A,B ∈ F such that A ⊆ B and `(F , I) ≥ `(F), where I = [A,B]. Let F ′ = {C − A : C ∈ F ∩ I},
and note that F ′ is a subset of an n′-dimensional Boolean lattice, where n′ = |B| − |A|. Obtain F ′′
from F ′ by removing the minimum and maximum elements. Since F is 2[3]-free, it follows that F ′′
is S3-free. It follows that `(F)− 2 ≤ `(F ′)− 2 = `(F ′′) ≤ Λ∗(S3)− 2 and therefore `(F) ≤ Λ∗(S3).

It remains to show that Λ∗(S3) ≤ 16. The bound in Theorem 2 is optimized for large r; in the
case r = 3, we obtain a better bound directly from Lemma 10. Let F ⊆ 2[n] with `(F) > 16. At
least one of {A ∈ F : |A| ≤ n/2} and {A ∈ F : |A| ≥ n/2} has Lubell mass larger than 8. In either
case, we may apply Lemma 10 with δ = 1/2 and γ = 2/3 to obtain a copy of S3 in F .

We make no effort to optimize the bound in Corollary 3 further. From below, only the trivial
bounds λ∗(2[3]) ≥ π∗(2[3]) ≥ π∗(K4) = 3 are known. It is conceivable that π∗(2[3]) = 3 or even
λ∗(2[3]) = 3. (The strong Lubell threshold satisfies Λ∗(2[3]) ≥ 3 + 2/3, since the family 2[3] − {1} is
2[3]-free.)

Our next goal is to establish the strong Lubell threshold of 2[2] exactly. Let an =
∑n

k=0 1/
(
n
k

)
.

We present initial values of this sequence the table below.

n 0 1 2 3 4 5 6 7 8

an 1 2 2 + 1
2 2 + 2

3 2 + 2
3 2 + 3

5 2 + 31
60 2 + 46

105 2 + 13
35

approx. 1 2 2.5 2.667 2.667 2.6 2.517 2.438 2.371

It is easy to show that (an)n≥0 is a unimodal sequence that achieves its maximum value 2 + 2/3 at
n = 3 and n = 4.

Proposition 2. Λ∗(2[2]) = 2 + 2/3.
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Proof. Let F ⊆ 2[n] and suppose that F is 2[2]-free. By two applications of Proposition 1, there
exists a subcube [A,B] with A,B ∈ F such that `(F , [A,B]) ≥ `(F). Let F ′ = {C − A : C ∈
F∩[A,B]} and note that F ′ is a subfamily of an n′-dimensional Boolean lattice, where n′ = |B|−|A|.
Since F ′ contains its minimum and maximum elements and also F ′ is 2[2]-free, it follows that F ′ is a
chain. Therefore F ′ contains at most one set of each size, which implies that `(F ′) ≤ an′ ≤ 2+2/3.
Hence `(F) ≤ `(F , [A,B]) = `(F ′) ≤ 2 + 2/3, and therefore Λ∗(2[2]) ≤ 2 + 2/3.

For the lower bound, let Fn be a maximal chain in 2[n]. Clearly, Fn is 2[2]-free and `(Fn) = an.
By choosing n = 3 or n = 4, we obtain the desired lower bound.

As we have seen, to prove upper bounds on the strong Lubell threshold of P , it suffices to
consider P -free families F ⊆ 2[n] with ∅, [n] ∈ F . While the analogue for the Lubell thresh-
old does not generally hold, a weaker variant does hold for the Turán threshold, where we may
assume that ∅ ∈ F . Griggs, Li, and Lu [11] proved the analogous statement for the exten-
sion variant. In the induced case, the proof is the same; we include it for completeness. Let
ρ∗(P ) = lim supn→∞{`(F) : ∅ ∈ F ⊆ 2[n] and F is P -free}.

Lemma 12. π∗(P ) ≤ ρ∗(P ) ≤ λ∗(P ).

Proof. Since an additional restriction is imposed on P -free families in the definition of ρ∗(P ), it is
immediate that ρ∗(P ) ≤ λ∗(P ).

For the other inequality, let (Fn)n≥1 be a sequence of P -free families such that Fn ⊆ 2[n] and
lim supn→∞ |F|/

(
n
bn/2c

)
= π∗(P ). Let F ′n be the subfamily of Fn consisting of all sets A ∈ Fn with

|A| ≤ n/2 +
√

2n lnn. By Lemma 11, we have that |Fn| − |F ′n| ≤ 2n/n = o(
(

n
bn/2c

)
). It follows

that `(F ′n) ≥ |F ′n|/
(

n
bn/2c

)
≥ |Fn|/

(
n
bn/2c

)
− o(1). By Proposition 1, there exists An ∈ F ′n such that

`(F ′, In) ≥ `(F ′), where In is the subcube [An, [n]]. Let F ′′n = {C−An : C ∈ F ′n∩In}, and note that
∅ ∈ F ′′n and F ′′n is subfamily of an n′′-dimensional cube with n′′ = n− |A| ≥ n− (n/2 +

√
2n lnn).

Therefore (F ′′n)n≥1 is a sequence of P -free families in Boolean lattices of unbounded dimension and
`(F ′′n) = `(F ′n, In) ≥ `(F ′n) ≥ |Fn|/

(
n
bn/2c

)
− o(1). It follows that ρ∗(P ) ≥ lim supn→∞ `(F ′′n) ≥

π∗(P ).

Using ρ∗(P ), we improve the bound π∗(2[2]) ≤ 2 + 2/3 that follows from Proposition 2. This
gives a preliminary upper bound on π∗(2[2]). We expect that additional improvements are possible,
and we hope this motivates additional work on the induced variant of the diamond-free poset
problem.

Theorem 4. 2.2818564 < ρ∗(2[2]) < 2.5823284.

Proof. The lower bound is due to the following construction. Partition [n] into sets S, T , and R.
For families G and H, let G ∨H = {A∪B : A ∈ G and B ∈ H}. Let F be the set family that is the
union of the following subfamilies:

1. {∅},

2.
(
S
1

)
,

3.
(
S
1

)
∨
(
T
1

)
,

4.
(
S
1

)
∨
(
T
1

)
∨
(
R
1

)
,
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5.
(
T
2

)
,

6.
(
R
2

)
,

7.
(
T
2

)
∨
(
R
1

)
, and

8.
(
T
1

)
∨
(
R
2

)
.

It is clear that F contains no induced copy of 2[2]. Set |S| = x1n, |T | = x2n, and |R| = x3n, where
x1 + x2 + x3 = 1. We have

`(F) = 1 +
|S|
n

+
|S||T |+

(|T |
2

)
+
(|R|

2

)(
n
2

) +
|S||T ||R|+ |T |

(|R|
2

)
|+
(|T |

2

)
|R|(

n
3

)
= 1 + x1 + 2x1x2 + 6x1x2x3 + x2

2 + 3x2
2x3 + 3x2x3

2 + x3
2 +O(1/n).

This polynomial achieves the maximum value 428
243 + 40

243

√
10 ≈ 2.281856404 at x1 = x3 =

√
10−1
9 ≈

.2402530734 and x2 = 11+2
√
10

9 ≈ .5194938532. Hence, ρ∗(2[2]) > 2.2818564.

The upper bound follows from the first moment method. Let F be a 2[2]-free subset of 2[n] with
∅ ∈ F . Note that for each A ∈ F , we have that F ∩ [∅, A] is a chain, and therefore F ∩ [∅, A]
contains at most one set of each size in {0, . . . , |A|}. Let G be the subfamily of all A ∈ F such that

F ∩ [∅, A] does not contain a set of size 1. For k ≥ 1, let Mk = (F − G) ∩
([n]
k

)
. Note that G and

(Mk)k≥1 form a partition of F .
Choose a maximal chain C in 2[n] uniformly at random. For each A ∈ F , let CA be the event

that A is the maximum set in F ∩ C. Then we have

`(F) =
∑
A∈F

`−A(F)Pr(CA) (1)

=
∑
A∈G

`−A(F)Pr(CA) +
∑
k≥1

 ∑
A∈Mk

`−A(F)Pr(CA)

 (2)

Since F ∩ [∅, A] contains at most one set of each size for each A ∈ F , it follows that `−A(F) ≤ ak,
where k = |A|. Moreover, if A ∈ G, then `−A(F) ≤ ak − 1/k. It is easy to check that the sequence
(ak − 1/k)k≥1 achieves its maximum value 2 + 5/12 at k = 4. Let α = 2 + 5/12. Setting E0 to be
the event that the maximum set in F ∩ C belongs to G and Ek to be the event that the maximum
set in F ∩ C belongs to Mk, it follows that

`(F) ≤
∑
A∈G

αPr(CA) +
∑
k≥1

 ∑
A∈Mk

akPr(CA)

 (3)

= αPr(E0) +
∑
k≥1

akPr(Ek). (4)

Note that the sequence (ak)k≥0 satisfies a3 = a4 > a5 > a6 > a2 > a7 > α and ak < α when k ≤ 1
or k ≥ 8. With Ei,j =

⋃
i≤k≤j Ek, we rewrite Equation (4):

`(F) ≤ (a3 − a5)Pr(E3,4) + (a5 − a6)Pr(E3,5) + (a6 − a2)Pr(E3,6) +

(a2 − a7)Pr(E2,6) + (a7 − α)Pr(E2,7) + α.

13



Let S = {s : {s} ∈ F}, let T = [n] − S, and let x = |T |/n. Recall that C is a random maximal
chain in 2[n]. If the event Ei,j occurs, then the maximum set A in F ∩ C belongs to

⋃
i≤k≤jMk.

For each k, let Ck be the unique set in C of size k. Since i ≤ |A| ≤ j, it follows that Ci ⊆ A ⊆ Cj .
Since |A∩S| = 1, it is not possible that |Ci ∩S| ≥ 2. Nor is it possible that |Cj ∩S| = 0. As these
are disjoint events, we have that

Pr(Ei,j) ≤ 1− Pr(|Ci ∩ S| ≥ 2)− Pr(|Cj ∩ S| = 0)

≤ 1− (1− Pr(|Ci ∩ S| = 0)− Pr(|Ci ∩ S| = 1))− Pr(|Cj ∩ S| = 0)

≤ Pr(|Ci ∩ S| = 0) + Pr(|Ci ∩ S| = 1)− Pr(|Cj ∩ S| = 0).

When i and j are fixed and n is large, this becomes

Pr(Ei,j) ≤ xi + i(1− x)xi−1 − xj +O(1/n).

Substituting into our bound and simplifying shows that

`(F) ≤ 29

12
+

1

6
x+

5

12
x2 − 1

3
x3 − 1

15
x4 − 1

12
x5 − 11

140
x6 − 3

140
x7 +O(1/n).

Using calculus, it is easy to check that the maximum value of the above polynomial for x ∈ [0, 1] is
2.5823283024 · · · , which is reached at x = 0.6870021578 · · · . Thus, ρ∗(2[2]) ≤ 2.5823284.

For the extension variant, Kramer, Martin, and Young [17] proved that La(n, 2[2]) ≤ (2.25 +
o(1))

(
n
bn/2c

)
. In fact, they prove that if ∅ ∈ F ⊆ 2[n] and F does not contain an extension of 2[2],

then `(F) ≤ 2.25 + o(1). Since there are 2[2]-free families with Lubell mass 2.25 − o(1), it is not
possible to improve the upper bound La(n, 2[2]) ≤ (2.25 + o(1))

(
n
bn/2c

)
using Lubell-type arguments

exclusively.
The lower bound in Theorem 4 shows that the Lubell threshold of 2[2] is strictly larger in the

induced variant than it is in the extension variant, providing additional evidence that the two
problems are fundamentally different. Just as known constructions show that 2.25 is a natural
barrier in the extension variant, the construction in Theorem 4 shows that one cannot improve the
bound π∗(2[2]) < 2.583 beyond 2.28 using Lubell-type arguments exclusively.
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