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Abstract. A poset is (r+s)-free if it does not contain two incomparable

chains of size r and s, respectively. We prove that when r and s are at

least 2, the First-Fit algorithm partitions every (r + s)-free poset P into

at most 8(r− 1)(s− 1)w chains, where w is the width of P . This solves

an open problem of Bosek, Krawczyk, and Szczypka (SIAM J. Discrete

Math., 23(4):1992–1999, 2010).

1. Introduction

A chain in a poset is a set of elements that are pairwise comparable,
and an antichain is a set of elements that are pairwise incomparable. The
height of a poset is the size of a largest chain, and the width is the size of
a largest antichain. In the on-line chain partitioning problem, the elements
of an unknown poset P are revealed one by one in some order. Each time
a new element x is presented, one has to assign a color to x, maintaining
the property that each color class is a chain. The goal is to minimize the
number of chains in the resulting chain partition of P .

This classical problem has received increased attention in the recent years;
see, for example, the survey by Bosek, Felsner, Kloch, Krawczyk, Matecki,
and Micek [1]. In this context, the quality of a solution is typically compared
against the width w of P . Since elements of an antichain must receive
distinct colors, at least w colors are needed. By Dilworth’s theorem, if all
elements of P are presented before any are colored, then w colors suffice. In
the on-line setting, more colors are needed.

Let val(w) be the least k such that there is an on-line algorithm that
partitions posets of width w into at most k chains. Establishing that val(w)
is finite when w ≥ 2 is challenging. In 1981, Kierstead [9] proved that
val(w) ≤ (5w − 1)/4. For nearly three decades, Kierstead’s result was the
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best known upper bound on val(w). Recently, Bosek and Krawczyk [2]
showed that val(w) ≤ w16 lgw (see [1] for a proof sketch). From below,
Szemerédi proved that val(w) ≥

(
w+1

2

)
(see [1, 9]), and Bosek et al. [1]

showed that val(w) ≥ (2 − o(1))
(
w+1

2

)
. One of the central questions in the

theory of on-line problems on partial orders is whether val(w) is bounded
above by a polynomial in w.

In this paper, we are interested in the performance of an on-line chain
partitioning algorithm called First-Fit. Using the positive integers for colors,
First-Fit colors x with the least j such that x and all elements previously
assigned color j form a chain. It is known that, for general posets, the
number of chains used by First-Fit is not bounded by a function of w. In
fact, Kierstead [9] showed that First-Fit uses arbitrarily many chains on
posets of width 2 (see also [4]).

Nevertheless, First-Fit performs well on certain classes of posets, such
as interval orders. An interval order is a poset whose elements are closed
intervals on the real line, with [a, b] < [c, d] if and only if b < c. Let
FF(w) be the maximum number of chains that First-Fit uses on interval
orders of width w. Kierstead [10] proved that FF(w) ≤ 40w. Kierstead and
Qin [11] subsequently improved the bound, showing that FF(w) ≤ 25.8w.
Later, Pemmaraju, Raman, and Varadarajan [16] (see also [17]) proved that
FF(w) ≤ 10w with an elegant argument known as the Column Construction
Method. Their proof was later refined by Brightwell, Kierstead, and Trot-
ter [5] and independently by Narayanaswamy and Babu [15] to show that
FF(w) ≤ 8w.

From early results of Kierstead and Trotter [14], it follows that FF(w) ≥
(3+ε)w for some positive ε. Chrobak and Ślusarek [6] showed that FF(w) ≥
4w − 9 when w ≥ 4 and subsequently improved the multiplicative constant
to 4.45 at the expense of a weaker additive constant. In 2004, Kierstead and
Trotter [13] proved that FF(w) ≥ 4.99w − c for some constant c with the
aid of a computer. Recently, Kierstead, Smith, and Trotter [12] proved that
for each positive ε, there is a constant c such that FF(w) ≥ (5− ε)w − c.

If P and Q are posets, then P+Q denotes the poset obtained from disjoint
copies of P and Q where elements in the copy of P are incomparable to
elements in the copy of Q. A poset P is Q-free if no induced subposet of
P is isomorphic to Q. We denote by r the poset consisting of a chain of
size r. Fishburn [8] characterized the interval orders as the posets that are
(2 + 2)-free. When r and s are at least two, the family of (r+ s)-free posets
contains the family of interval orders. Bosek, Krawczyk, and Szczypka [4]
showed that when r ≥ s, First-Fit partitions every (r+ s)-free poset into at
most (3r − 2)(w − 1)w + w chains. They asked whether First-Fit uses only
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a linear number of chains, in terms of w, on (r+ s)-free posets, as it does on
interval orders. This question also appears in the survey of Bosek et al. [1]
and in a recent paper of Felsner, Krawczyk, and Trotter [7].

We give a positive answer to this question by showing that First-Fit par-
titions every (r+s)-free poset into at most 8(r−1)(s−1)w chains. As far as
we know, this also provides the first proof that some on-line algorithm uses
o(w2) chains on (r + s)-free posets. Our proof is strongly influenced by the
Column Construction Method of Pemmaraju et al. [17] and can be viewed as
a generalization of that technique from interval orders to (r+ s)-free posets.

In Section 2, we present our generalization of the Column Construction
Method and establish several of its properties. In Section 3, we combine
these results with a structural lemma about (r+s)-free posets to obtain our
main result.

2. Evolution of Societies

Let P be a poset. A First-Fit chain partition is an ordered partition
C1, . . . , Cm of P into non-empty chains such that if i < j and x ∈ Cj , then
some element in Ci is incomparable to x. Note that if C1, . . . , Cm is a First-
Fit chain partition, then First-Fit produces this partition when elements in
C1 are presented first, followed by elements in C2, and continuing through
elements in Cm. Conversely, every ordered partition produced by First-Fit
is a First-Fit chain partition.

A group is a set of elements in P . A t-society is a pair (S, F ) where S is
a set of groups and F is a friendship function from S× [t] to S ∪{?}, where
[t] denotes the set {1, . . . , t}. Each group X ∈ S has slots for up to t friends.
We say that X lists Y as a friend in slot k if F (X, k) = Y . It is possible
that X does not list any friend in slot k, in which case F (X, k) = ?.

The overview of our proof is as follows. Given an (r+ s)-free poset P , we
first exploit the structure of P to define an initial t-society (S0, F0) for some
t depending on s. Next, we fix a First-Fit chain partition C1, . . . , Cm, which
we extend to an infinite sequence of chains by defining Cj = ∅ for j > m.
We allow the initial t-society to evolve, generating a sequence of t-societies
(S0, F0), . . . , (Sn, Fn). For j ≥ 1, the t-society (Sj , Fj) is obtained from
(Sj−1, Fj−1) by following certain rules that depend on Cj and the previous
transitions. It is helpful to view the t-societies as vertices of a path and to
associate the edge joining (Sj−1, Fj−1) and (Sj , Fj) with the chain Cj .

During the evolution, we maintain that S0 ⊇ S1 ⊇ · · · ⊇ Sn. The evolu-
tion ends when a t-society (Sn, Fn) is generated where Sn = ∅. The proof
proceeds in two parts. First, we show that a long evolution implies that
some group in the initial t-society is large. Second, given an (r + s)-free



4 GWENAËL JORET AND KEVIN G. MILANS

poset P , we show how to construct an initial t-society of groups inducing
subposets of height at most r − 1 that leads to a long evolution. Because
large posets of bounded height contain large antichains, we obtain a lower
bound on the width of P .

In our societies, friendship is a lifetime commitment: if Fj−1(X, k) = Y

and {X,Y } ⊆ Sj , then Fj(X, k) = Y . If X survives the transition from Sj−1

to Sj but Y does not, then X either chooses a new friend for its kth slot
or leaves its kth slot empty according to the rules of a replacement scheme.
We postpone the presentation of the details of our replacement scheme and
the construction of the initial t-society.

A group X may survive the transition from Sj−1 to Sj in three ways, each
of which defines a transition type. We use the first three Greek letters α,
β, and γ to name the transition types. When a ∈ {α, β, γ} and i ≤ j, we
define Na

i,j(X) to be the number of transitions of type a that X makes in
the evolution from (Si, Fi) to (Sj , Fj).

Let ε = 1/2t; in Lemma 2.4, we will find that this choice of ε is opti-
mal. We now describe the rules that govern which groups survive the jth
transition from Sj−1 to Sj . Let X be a group in Sj−1.

(1) If X has non-empty intersection with Cj , then X makes an α-
transition from Sj−1 to Sj .

(2) Otherwise, if some friend of X in the t-society (Sj−1, Fj−1) has non-
empty intersection with Cj , then X makes a β-transition from Sj−1

to Sj .
(3) Otherwise, if there is an i such that Nα

i,j−1(X) > ε(j − i), then X

makes a γ-transition from Sj−1 to Sj .

If none of the three rules apply, then X 6∈ Sj , and other groups that list X
as a friend and survive to Sj update their list of friends according to the
replacement scheme.

First, we show that a long evolution implies that some group is large. We
need several lemmas.

Lemma 2.1. Fix an evolution (S0, F0), . . . , (Sn, Fn) of t-societies. Let
Y1, Y2, . . . , Yq be a list of groups and let [a1, b1], . . . , [aq, bq] be a sequence of
disjoint intervals with integral endpoints in [0, n] such that bj is the largest
integer such that Yj ∈ Sbj . The sum

∑q
j=1N

α
aj ,bj

(Yj) is at most εn.

Proof. If aj = bj , then clearly Nα
aj ,bj

(Yj) = 0. Hence, we may assume that
0 ≤ a1 < b1 < · · · < aq < bq. Also, bq < n because Sn = ∅. Note that
Yj 6∈ Sbj+1. It follows that Yj did not satisfy the third condition in the
transition from Sbj to Sbj+1 and therefore Nα

aj ,bj
(Yj) ≤ ε(bj + 1− aj). Also,
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j=1(bj + 1 − aj) ≤ n because the intervals [aj , bj ] are disjoint subsets of

[0, n− 1] with integral endpoints. �

Our next lemma provides a bound on the number of β-transitions that a
group can make if it survives to the last non-empty t-society.

Lemma 2.2. Fix an evolution (S0, F0), . . . , (Sn, Fn) of t-societies. If X ∈
Sn−1, then Nβ

0,n−1(X) ≤ tεn.

Proof. Let X ∈ Sn−1, and for each k ∈ [t], let Yk be the set of groups that
X lists as a friend in slot k at some point in the evolution. If X makes a
β-transition from Sj−1 to Sj , then there is a slot k and group Y ∈ Yk such
that Fj−1(X, k) = Y and Y has non-empty intersection with Cj . Because
Y ∈ Sj−1 and Y has non-empty intersection with Cj , we have that Y makes
an α-transition from Sj−1 to Sj . It follows that

Nβ
0,n−1(X) ≤

t∑
k=1

∑
Y ∈Yk

Nα
I(Y )(Y )

where I(Y ) is denotes the interval during which X lists Y as a friend. (For-
mally, j ∈ I(Y ) if and only if Fj(X, k) = Y for some k ∈ [t].) It suffices to
show that

∑
Y ∈Yk

Nα
I(Y )(Y ) ≤ εn for each k ∈ [t]. Because {I(Y ) : Y ∈ Yk}

are disjoint intervals, the bound follows from Lemma 2.1. �

Next, we show that for each group X, the α-transitions that X makes
constitute a large fraction of the total number of X’s transitions not of type
β.

Lemma 2.3. Fix an evolution (S0, F0), . . . , (Sn, Fn) of t-societies. If X is
a group, then Nα

0,j(X) ≥ ε(Nα
0,j(X) +Nγ

0,j(X)) for each j with X ∈ Sj.

Proof. If j = 0, then the inequality holds. For j ≥ 1, the inequality holds
immediately by induction unless X makes a γ-transition from Sj−1 to Sj .
In this case, there is some i such that Nα

i,j−1(X) > ε(j − i). Applying the
inductive hypothesis to obtain a lower bound on Nα

0,i(X), it follows that

Nα
0,j(X) = Nα

0,i(X) +Nα
i,j−1(X)

≥ ε(Nα
0,i(X) +Nγ

0,i(X)) + ε(j − i)

≥ ε(Nα
0,i(X) +Nγ

0,i(X)) + ε(Nα
i,j(X) +Nγ

i,j(X))

= ε(Nα
0,j(X) +Nγ

0,j(X))

as required. �

We are now able to show that a long evolution implies that some group
is large.
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Lemma 2.4. Fix an evolution (S0, F0), . . . , (Sn, Fn) of t-societies. If X ∈
Sn−1, then |X| ≥ (n− 2)/4t.

Proof. Whenever X makes an α-transition from Sj−1 to Sj , it has non-empty
intersection with chain Cj . Because the chains are disjoint, it follows that
|X| ≥ Nα

0,n−1(X). By Lemma 2.3, we have that Nα
0,n−1(X) ≥ ε(Nα

0,n−1(X)+
Nγ

0,n−1(X)). Note thatX makes n−1 transitions in total, becauseX ∈ Sn−1.
Hence Nα

0,n−1(X)+Nβ
0,n−1(X)+Nγ

0,n−1(X) = n−1. By Lemma 2.2, we have
that Nα

0,n−1(X) + tεn + Nγ
0,n−1(X) ≥ n − 1. Consequently, Nα

0,n−1(X) ≥
ε(n − 1 − tεn). With ε = 1/2t, we obtain Nα

0,n−1(X) ≥ (n − 2)/4t as
required. �

3. The Initial Society and Replacement Scheme

It remains to describe the initial t-society and our replacement scheme.
Both depend on the following structural lemma about (r + s)-free posets.
The height of an element x, denoted h(x), is the size of a largest chain with
maximum element x.

Lemma 3.1. Let r and s be integers with r ≥ 2 and s ≥ 2, and let P be an
(r+s)-free poset. There is a function I which assigns to each element x ∈ P
a non-empty set of consecutive integers I(x) with the following properties.

(1) For each integer k, the set {x ∈ P : k ∈ I(x)} induces a subposet of
height at most r − 1.

(2) If x and y are incomparable in P , then either I(x) and I(y) have
non-empty intersection, or at most s−2 integers are strictly between
I(x) and I(y).

Proof. Let q be the height of P . For each x ∈ P , let Z(x) be the set of all
elements z such that P contains a chain of size r with minimum element x
and maximum element z. When Z(x) is non-empty, define b(x) to be the
minimum height of an element in Z(x); we set b(x) = q+ 1 when Z(x) = ∅.
Let I(x) = {h(x), . . . , b(x)− 1}.

Fix an integer k and let X = {x ∈ P : k ∈ I(x)}. Suppose for a contra-
diction that X contains a chain x1 < · · · < xr. Since xr ∈ X, we have that
k ∈ I(xr), which implies that h(xr) ≤ k. Similarly, k ∈ I(x1) and therefore
k ≤ b(x1) − 1. Since xr ∈ Z(x1), it follows that b(x1) ≤ h(xr). Hence
h(xr) ≤ k ≤ h(xr)− 1, a contradiction. It follows that (1) holds.

It remains to check (2). Suppose that x and y are incomparable. If
I(x) and I(y) have non-empty intersection, then (2) holds. Hence, we may
assume that every integer in I(x) is less than every integer in I(y). Let i be
the greatest integer in I(x) and let j be the least integer in I(y), and note
that i < j ≤ q. Since i ∈ I(x) but i+ 1 6∈ I(x), it follows that b(x)− 1 = i.
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Because i < q, it follows that b(x) = i + 1 ≤ q and therefore Z(x) 6= ∅.
Hence, there is a chain x = x1 < · · · < xr in P with h(xr) = i+1. Similarly,
h(y) = j and there is a chain y = yj > · · · > y1 in P with h(yk) = k for each
k ∈ [j]. Let X = {x1, . . . , xr} and let Y = {yi+1, . . . , yj}. We claim that
every element in X is incomparable to every element in Y . If xa ≤ yb, then
transitivity implies that x = x1 ≤ yj = y, contrary to the assumption that
x and y are incomparable. Conversely, if ya ≤ xb, then transitivity implies
that yi+1 ≤ xr. But yi+1 ≤ xr is impossible because yi+1 and xr are distinct
(since xr 6≤ yi+1) and have the same height. Hence every element in X is
incomparable to every element in Y as claimed.

It follows that X ∪ Y induces a copy of r + j − i in P . Because P is
(r + s)-free, we have that j − i ≤ s − 1 and therefore the set of integers
{i+ 1, . . . , j − 1} strictly between I(x) and I(y) has size at most s− 2. �

We now have the tools necessary to describe the initial t-society and our
replacement scheme. While our transition rules require only that each Sj is a
set of groups, our replacement scheme imposes additional structure on Sj . In
particular, our replacement scheme treats Sj as a list of groups. Let q be the
height of P . With I as in Lemma 3.1, we define Xk = {x ∈ P : k ∈ I(x)}
when 1 ≤ k ≤ q and set S0 = X1, . . . , Xq. This ordering is preserved
throughout the evolution: if Y appears before Z in S0 and {Y,Z} ⊆ Sj ,
then Y also appears before Z in Sj . When L is a list of objects a1, . . . , an,
we define distL(ai, aj) = |j − i|. For convenience, when Y and Z are groups
in Sj , we define distj(Y, Z) = distSj (Y,Z).

Let t = 2(s−1). In the initial t-society (S0, F0), we define F0 so that if Y
and Z are distinct groups in S0 with dist0(Y, Z) ≤ s−1, then F (Y, k) = Z for
some slot k. If fewer than 2(s−1) groups in S0 are at distance at most s−1
from Y , then some slots are empty (formally, F (Y, k) = ?). Our replacement
scheme maintains that in t-society (Sj , Fj), a group Y lists as friends all
other groups Z such that distj(Y,Z) ≤ s − 1. This is possible to maintain
since distj(Y,Z) < distj−1(Y,Z) only occurs when some group Z ′ ∈ Sj−1

with distj−1(Y,Z ′) < distj−1(Y, Z) does not survive the transition from
(Sj−1, Fj−1) to (Sj , Fj). It follows that at least as many of Y ’s friendship
slots become available as are needed to accommodate the groups Z with
distj−1(Y, Z) > s − 1 and distj(Y, Z) ≤ s − 1. Our replacement scheme
places these groups in Y ’s available friendship slots arbitrarily. As before,
unused slots are assigned the value ?.

Our next aim is to show that our initial t-society and replacement scheme
lead to a long evolution. We first prove an analogue of Lemma 4.2 in [17].

Lemma 3.2. Let C1, . . . , Cm be a First-Fit chain partition, and de-
fine Cj = ∅ for j > m. Let (S0, F0) be our initial t-society, and
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let (S0, F0), . . . , (Sn, Fn) be the evolution resulting from our replacement
scheme. For each i, we have that

⋃
X∈Si

X ⊇
⋃
j>iCj.

Proof. By induction on i. By Lemma 3.1, I(x) 6= ∅ for each element x, and
therefore

⋃
X∈S0

X contains all elements in P .
Let i ≥ 1 and consider an element y ∈ Cj with j > i. Because C1, . . . , Cm

is a First-Fit chain partition, there is an element z ∈ Ci such that y and z

are incomparable. By induction, there are groups Y ∈ Si−1 and Z ∈ Si−1

with y ∈ Y and z ∈ Z. Among all such pairs {Y,Z}, choose Y and Z

to minimize disti−1(Y, Z). We claim that disti−1(Y, Z) ≤ s − 1. Indeed,
if disti−1(Y,Z) ≥ s, then there are at least s − 1 groups in Si−1 that are
strictly between Y and Z in the list X1, . . . , Xq. By our selection of Y and
Z, none of these groups contain y or z. Hence, it follows that the index of
each such group is strictly between I(y) and I(z), contradicting Lemma 3.1.

Because disti−1(Y, Z) ≤ s − 1, our replacement scheme ensures that Y
lists Z as a friend in some slot. Because z ∈ Z ∩ Ci, some friend of Y in
(Si−1, Fi−1) has non-empty intersection with Ci. It follows that Y either
makes an α-transition or a β-transition from Si−1 to Si. Hence y ∈ Y ∈ Si
and therefore y ∈

⋃
X∈Si

X as required. �

Lemma 3.3. Let C1, . . . , Cm be a First-Fit chain partition, and de-
fine Cj = ∅ for j > m. Let (S0, F0) be our initial t-society, and
let (S0, F0), . . . , (Sn, Fn) be the evolution resulting from our replacement
scheme. We have that n ≥ m+ 2.

Proof. Let y ∈ Cm. By Lemma 3.2, there is a group Y ∈ Sm−1 with y ∈ Y .
Because Y has non-empty intersection with Cm, we have that Y makes an α-
transition from Sm−1 to Sm. Also, Nα

m−1,m(Y ) = 1 and ε((m+1)−(m−1)) =
2ε = 1/t = 1/(2(s − 1)) ≤ 1/2, and therefore Y is eligible to make a γ-
transition from Sm to Sm+1. Hence Y ∈ Sm+1. Because the evolution ends
with an empty t-society, it follows that n ≥ m+ 2. �

Putting all the pieces together, we obtain our main theorem.

Theorem 3.4. If r and s are at least 2 and P is an (r + s)-free poset of
width w, then First-Fit partitions P into at most 8(r − 1)(s− 1)w chains.

Proof. Let C1, . . . , Cm be a First-Fit chain partition, and define Cj = ∅
for j > m. Obtain our initial t-society (S0, F0) from Lemma 3.1, and
let (S0, F0), . . . , (Sn, Fn) be the evolution obtained with our replacement
scheme. By Lemma 3.3, we have that n ≥ m + 2. By Lemma 2.4, some
group X ∈ S0 has size at least (n−2)/4t = (n−2)/(8(s−1)) ≥ m/(8(s−1)).
By Lemma 3.1, the height of X is at most r−1. It follows that X is the union
of r−1 antichains, and therefore w ≥ |X|/(r−1) ≥ m/(8(s−1)(r−1)). �
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4. Concluding Remarks

The following related problem is open: for which posets Q of width 2 is
there a function fQ(w) such that First-Fit partitions every Q-free poset of
width w into at most fQ(w) chains? The same question applies when fQ(w)
is restricted to be a polynomial or a linear function of w. We note that
these problems are only interesting for posets Q of width 2. Indeed, there is
a trivial linear bound when Q is a chain, and the example of Kierstead [9]
implies that no such function exists when the width of Q is at least 3.

Addendum

While this article was under review, Bosek, Krawczyk, and Matecki [3]
proved that for each poset Q of width 2, there is a function fQ(w) such that
First-Fit partitions every Q-free poset of width w into at most fQ(w) chains.
Our second question remains open.
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