First-Fit is Linear on $(\underline{r} + \underline{s})$ -free Posets

Kevin G. Milans (milans@math.uiuc.edu) Joint with Gwenaël Joret

> University of Illinois at Urbana-Champaign University of South Carolina

SIAM Conference on Discrete Mathematics Austin, TX 15 June 2010

• A game between Spoiler and Algorithm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- A game between Spoiler and Algorithm.
- Spoiler presents an element x and all comparisons between x and previously presented elements.

- A game between Spoiler and Algorithm.
- Spoiler presents an element x and all comparisons between x and previously presented elements.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Algorithm permanently assigns x to a chain.

- A game between Spoiler and Algorithm.
- Spoiler presents an element x and all comparisons between x and previously presented elements.
- Algorithm permanently assigns x to a chain.

Definition

The least k such that Algorithm has a strategy to partition posets of width w into at most k chains is val(w).

- A game between Spoiler and Algorithm.
- Spoiler presents an element x and all comparisons between x and previously presented elements.
- Algorithm permanently assigns x to a chain.

Definition

The least k such that Algorithm has a strategy to partition posets of width w into at most k chains is val(w).

Theorem

- ▶ (Kierstead (1981)): $val(w) \leq \frac{5^w 1}{4}$
- ▶ (Szemerédi): val $(w) \ge {\binom{w+1}{2}}$

- A game between Spoiler and Algorithm.
- Spoiler presents an element x and all comparisons between x and previously presented elements.
- Algorithm permanently assigns x to a chain.

Definition

The least k such that Algorithm has a strategy to partition posets of width w into at most k chains is val(w).

Theorem

- (Kierstead (1981)): $\operatorname{val}(w) \leq \frac{5^w 1}{4}$
- (Szemerédi): val $(w) \ge {\binom{w+1}{2}}$
- ▶ (Bosek–Krawczyk (2010+)): $val(w) \le w^{16 \lg w}$
- (Bosek *et al.* (2010+)): $val(w) \ge (2 o(1))\binom{w+1}{2}$

• One simple strategy for Algorithm: First-Fit.

(ロ)、(型)、(E)、(E)、 E) の(の)

• One simple strategy for Algorithm: First-Fit.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

First-Fit puts x in the first possible chain.

- One simple strategy for Algorithm: First-Fit.
- First-Fit puts x in the first possible chain.

Example (Kierstead)

First-Fit uses arbitrarily many chains on posets of width 2.

- One simple strategy for Algorithm: First-Fit.
- First-Fit puts x in the first possible chain.

Example (Kierstead)

First-Fit uses arbitrarily many chains on posets of width 2.

▶ When *P* has additional structure, First-Fit does better.

- One simple strategy for Algorithm: First-Fit.
- First-Fit puts x in the first possible chain.

Example (Kierstead)

First-Fit uses arbitrarily many chains on posets of width 2.

▶ When *P* has additional structure, First-Fit does better.

Definition

An interval order is a poset whose elements are closed intervals on the real line such that [a, b] < [c, d] if and only if b < c.

- One simple strategy for Algorithm: First-Fit.
- First-Fit puts x in the first possible chain.

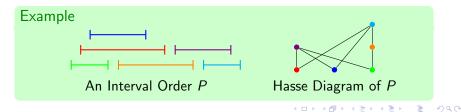
Example (Kierstead)

First-Fit uses arbitrarily many chains on posets of width 2.

▶ When *P* has additional structure, First-Fit does better.

Definition

An interval order is a poset whose elements are closed intervals on the real line such that [a, b] < [c, d] if and only if b < c.



First-Fit on Interval Orders

Definition

The least k such that First-Fit partitions interval orders of width w into at most k chains is FF(w).

First-Fit on Interval Orders

Definition

The least k such that First-Fit partitions interval orders of width w into at most k chains is FF(w).

Theorem (Upper Bounds)

- (Woodall (1976)): $FF(w) = O(w \log w)$
- (Kierstead (1988)): $FF(w) \le 40w$
- (Kierstead–Qin (1995)): $FF(w) \leq 25.8w$
- ▶ (Pemmaraju–Raman–Varadarajan (2003)): $FF(w) \le 10w$
- ▶ (Brightwell-Kierstead-Trotter (2003; unpub)): $FF(w) \le 8w$
- ▶ (Narayansamy–Babu (2004)): $FF(w) \le 8w 3$
- (Howard (2010+)): $FF(w) \le 8w 4$

First-Fit on Interval Orders

Definition

The least k such that First-Fit partitions interval orders of width w into at most k chains is FF(w).

Theorem (Lower Bounds)

- ► (Kierstead-Trotter (1981)): There is a positive ε such that $FF(w) \ge (3 + \varepsilon)w$ when w is sufficiently large.
- ► (Chrobak–Ślusarek (1990)): $FF(w) \ge 4w 9$ when $w \ge 4$.
- ► (Kierstead-Trotter (2004)): $FF(w) \ge 4.99w O(1)$.
- ▶ (D. Smith (2009)): If $\varepsilon > 0$, then $FF(w) \ge (5 \varepsilon)w$ when w is sufficiently large.

The poset <u>r</u> + <u>s</u> is the disjoint union of a chain of size r and a chain of size s.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 + 2

Theorem (Fishburn (1970))

- The poset <u>r</u> + <u>s</u> is the disjoint union of a chain of size r and a chain of size s.
- A poset P is an interval order if and only if P does not contain <u>2</u> + <u>2</u> as an induced subposet.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (Fishburn (1970))	
$\begin{array}{c} ch \\ ch$	The poset $\underline{r} + \underline{s}$ is the disjoint union of a ain of size r and a chain of size s . poset P is an interval order if and only P does not contain $\underline{2} + \underline{2}$ as an induced bposet.

Theorem (Bosek–Krawczyk–Szczypka (2010)) If P is an $(\underline{r} + \underline{r})$ -free poset of width w, then First-Fit partitions P into at most $3rw^2$ chains.

Theorem (Fishburn (1970))	
$\frac{1}{2+2}$	The poset $\underline{r} + \underline{s}$ is the disjoint union of a chain of size r and a chain of size s. A poset P is an interval order if and only if P does not contain $\underline{2} + \underline{2}$ as an induced subposet.

Theorem (Bosek–Krawczyk–Szczypka (2010))

If P is an $(\underline{r} + \underline{r})$ -free poset of width w, then First-Fit partitions P into at most $3rw^2$ chains.

Question (Bosek–Krawczyk–Szczypka (2010)) Can the bound be improved from $O(w^2)$ to O(w)?

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

• Let *P* be an $(\underline{r} + \underline{s})$ -free poset.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

- Let *P* be an $(\underline{r} + \underline{s})$ -free poset.
- ► A group is a set of elements of P inducing a subposet of height at most r - 1.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

- Let *P* be an $(\underline{r} + \underline{s})$ -free poset.
- ► A group is a set of elements of P inducing a subposet of height at most r - 1.
- ► A society (S, F) consists of a set S of groups and a friendship function F.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

- Let *P* be an $(\underline{r} + \underline{s})$ -free poset.
- ► A group is a set of elements of P inducing a subposet of height at most r - 1.
- ► A society (S, F) consists of a set S of groups and a friendship function F.
- Each group has t slots for friends, where t = 2(s 1).

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

- Let *P* be an $(\underline{r} + \underline{s})$ -free poset.
- ► A group is a set of elements of P inducing a subposet of height at most r - 1.
- ► A society (S, F) consists of a set S of groups and a friendship function F.
- Each group has t slots for friends, where t = 2(s 1).

$$X: \underbrace{\qquad } \\ 1 \quad 2 \quad 3 \qquad k \quad \cdots \qquad t$$

• If X lists Y as a friend in the kth slot, then F(X, k) = Y.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

- Let *P* be an $(\underline{r} + \underline{s})$ -free poset.
- ► A group is a set of elements of P inducing a subposet of height at most r - 1.
- ► A society (S, F) consists of a set S of groups and a friendship function F.
- Each group has t slots for friends, where t = 2(s 1).

• If X lists Y as a friend in the kth slot, then F(X, k) = Y.

► If X's kth slot is empty, then $F(X, k) = \star$.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

- Let *P* be an $(\underline{r} + \underline{s})$ -free poset.
- ► A group is a set of elements of P inducing a subposet of height at most r - 1.
- ► A society (S, F) consists of a set S of groups and a friendship function F.
- Each group has t slots for friends, where t = 2(s 1).

• If X lists Y as a friend in the kth slot, then F(X, k) = Y.

► If X's kth slot is empty, then $F(X, k) = \star$.

• Let C_1, \ldots, C_m be a chain partition produced by First-Fit.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ Let *C*₁,..., *C*_m be a chain partition produced by First-Fit.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

• Extend this by defining $C_i = \emptyset$ for j > m.

• Let C_1, \ldots, C_m be a chain partition produced by First-Fit.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Extend this by defining $C_j = \emptyset$ for j > m.
- Construct the initial society (S_0, F_0) .

• Let C_1, \ldots, C_m be a chain partition produced by First-Fit.

- Extend this by defining $C_j = \emptyset$ for j > m.
- Construct the initial society (S_0, F_0) .
- For $j \ge 1$, use C_j to obtain (S_j, F_j) from (S_{j-1}, F_{j-1}) .

$$(S_0, F_0) - C_1 - (S_1, F_1)$$

• Let C_1, \ldots, C_m be a chain partition produced by First-Fit.

- Extend this by defining $C_j = \emptyset$ for j > m.
- Construct the initial society (S_0, F_0) .
- For $j \ge 1$, use C_j to obtain (S_j, F_j) from (S_{j-1}, F_{j-1}) .

$$(S_0, F_0) - C_1 - (S_1, F_1) - C_2 - (S_2, F_2)$$

• Let C_1, \ldots, C_m be a chain partition produced by First-Fit.

- Extend this by defining $C_j = \emptyset$ for j > m.
- Construct the initial society (S_0, F_0) .
- For $j \ge 1$, use C_j to obtain (S_j, F_j) from (S_{j-1}, F_{j-1}) .

$$(S_0, F_0) - C_1 - (S_1, F_1) - C_2 - (S_2, F_2)$$

• Let C_1, \ldots, C_m be a chain partition produced by First-Fit.

- Extend this by defining $C_j = \emptyset$ for j > m.
- Construct the initial society (S_0, F_0) .
- For $j \ge 1$, use C_j to obtain (S_j, F_j) from (S_{j-1}, F_{j-1}) .

Key Properties

$$\blacktriangleright S_0 \supseteq S_1 \supseteq \cdots$$

$$(S_0, F_0)$$
 C_1 (S_1, F_1) C_2 (S_2, F_2)

- Let C_1, \ldots, C_m be a chain partition produced by First-Fit.
- Extend this by defining $C_j = \emptyset$ for j > m.
- Construct the initial society (S_0, F_0) .
- For $j \ge 1$, use C_j to obtain (S_j, F_j) from (S_{j-1}, F_{j-1}) .

Key Properties

- $\blacktriangleright S_0 \supseteq S_1 \supseteq \cdots.$
- ▶ If $F_{j-1}(X,k) = Y$ and $\{X,Y\} \subseteq S_j$, then $F_j(X,k) = Y$.

Evolution of Societies

$$(S_0, F_0)$$
 _____ (S_1, F_1) _____ (S_2, F_2)

- Let C_1, \ldots, C_m be a chain partition produced by First-Fit.
- Extend this by defining $C_j = \emptyset$ for j > m.
- Construct the initial society (S_0, F_0) .
- For $j \ge 1$, use C_j to obtain (S_j, F_j) from (S_{j-1}, F_{j-1}) .

Key Properties

$$\blacktriangleright S_0 \supseteq S_1 \supseteq \cdots$$

- ▶ If $F_{j-1}(X,k) = Y$ and $\{X,Y\} \subseteq S_j$, then $F_j(X,k) = Y$.
- If F_{j-1}(X, k) = Y and X ∈ S_j but Y ∉ S_j, then X picks a new friend for slot k (or leaves slot k empty) according to the rules of a replacement scheme.

Evolution of Societies

$$(S_0, F_0) - C_1 - (S_1, F_1) - C_2 - (S_2, F_2) - \cdots - (S_n, F_n)$$

- Let C_1, \ldots, C_m be a chain partition produced by First-Fit.
- Extend this by defining $C_j = \emptyset$ for j > m.
- Construct the initial society (S_0, F_0) .
- For $j \ge 1$, use C_j to obtain (S_j, F_j) from (S_{j-1}, F_{j-1}) .

Key Properties

$$\blacktriangleright S_0 \supseteq S_1 \supseteq \cdots$$

- ▶ If $F_{j-1}(X,k) = Y$ and $\{X,Y\} \subseteq S_j$, then $F_j(X,k) = Y$.
- If F_{j-1}(X, k) = Y and X ∈ S_j but Y ∉ S_j, then X picks a new friend for slot k (or leaves slot k empty) according to the rules of a replacement scheme.

• The process ends when (S_n, F_n) is generated with $S_n = \emptyset$.

Evolution of Societies

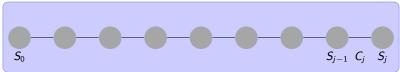
$$(S_0, F_0)$$
 C_1 (S_1, F_1) C_2 (S_2, F_2) \cdots (S_n, F_n)

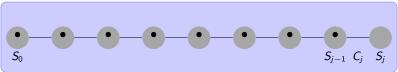
- Let C_1, \ldots, C_m be a chain partition produced by First-Fit.
- Extend this by defining $C_j = \emptyset$ for j > m.
- Construct the initial society (S_0, F_0) .
- For $j \ge 1$, use C_j to obtain (S_j, F_j) from (S_{j-1}, F_{j-1}) .

Key Properties

$$\bullet S_0 \supseteq S_1 \supseteq \cdots$$

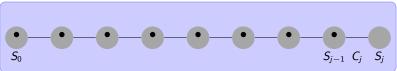
- If $F_{j-1}(X,k) = Y$ and $\{X,Y\} \subseteq S_j$, then $F_j(X,k) = Y$.
- If F_{j-1}(X, k) = Y and X ∈ S_j but Y ∉ S_j, then X picks a new friend for slot k (or leaves slot k empty) according to the rules of a replacement scheme.
- The process ends when (S_n, F_n) is generated with $S_n = \emptyset$.
- ► The list $(S_0, F_0), \ldots, (S_n, F_n)$ is an evolution of societies.





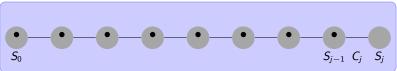
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Consider a group $X \in S_{j-1}$.



• Consider a group $X \in S_{j-1}$.

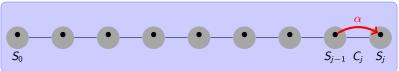
• There are 3 ways that X can transition from S_{j-1} to S_j .



- Consider a group $X \in S_{j-1}$.
- ▶ There are 3 ways that X can transition from S_{j-1} to S_j.

Transition Rules

1. If X has nonempty intersection with C_j , then X makes an α -transition to S_j .

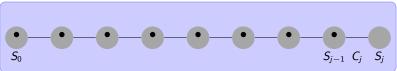


• Consider a group $X \in S_{j-1}$.

▶ There are 3 ways that X can transition from S_{j-1} to S_j.

Transition Rules

1. If X has nonempty intersection with C_j , then X makes an α -transition to S_j .

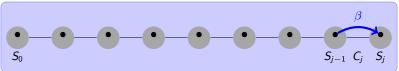


• Consider a group $X \in S_{j-1}$.

▶ There are 3 ways that X can transition from S_{j-1} to S_j.

Transition Rules

- 1. If X has nonempty intersection with C_j , then X makes an α -transition to S_j .
- 2. Otherwise, if some friend of X in (S_{j-1}, F_{j-1}) has nonempty intersection with C_j , then X makes a β -transition to S_j .

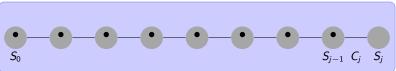


• Consider a group $X \in S_{j-1}$.

▶ There are 3 ways that X can transition from S_{j-1} to S_j.

Transition Rules

- 1. If X has nonempty intersection with C_j , then X makes an α -transition to S_j .
- 2. Otherwise, if some friend of X in (S_{j-1}, F_{j-1}) has nonempty intersection with C_j , then X makes a β -transition to S_j .

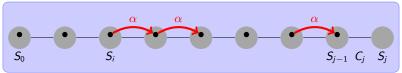


• Consider a group $X \in S_{j-1}$.

▶ There are 3 ways that X can transition from S_{j-1} to S_j.

Transition Rules

- 1. If X has nonempty intersection with C_j , then X makes an α -transition to S_j .
- 2. Otherwise, if some friend of X in (S_{j-1}, F_{j-1}) has nonempty intersection with C_j , then X makes a β -transition to S_j .
- 3. Otherwise, if the number of α -transitions that X makes from S_i to S_{j-1} exceeds (j i)/(2t) for some *i*, then X makes a γ -transition to S_j .

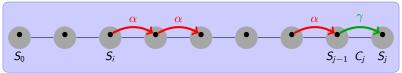


• Consider a group $X \in S_{j-1}$.

► There are 3 ways that X can transition from S_{j-1} to S_j.

Transition Rules

- 1. If X has nonempty intersection with C_j , then X makes an α -transition to S_j .
- 2. Otherwise, if some friend of X in (S_{j-1}, F_{j-1}) has nonempty intersection with C_j , then X makes a β -transition to S_j .
- 3. Otherwise, if the number of α -transitions that X makes from S_i to S_{j-1} exceeds (j i)/(2t) for some *i*, then X makes a γ -transition to S_j .



• Consider a group $X \in S_{j-1}$.

▶ There are 3 ways that X can transition from S_{j-1} to S_j.

Transition Rules

- 1. If X has nonempty intersection with C_j , then X makes an α -transition to S_j .
- 2. Otherwise, if some friend of X in (S_{j-1}, F_{j-1}) has nonempty intersection with C_j , then X makes a β -transition to S_j .
- 3. Otherwise, if the number of α -transitions that X makes from S_i to S_{j-1} exceeds (j i)/(2t) for some *i*, then X makes a γ -transition to S_j .

Two Parts

Two Parts

1. Construct an initial society and define a replacement scheme that leads to a long evolution.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Two Parts

1. Construct an initial society and define a replacement scheme that leads to a long evolution.

2. Show that a long evolution implies some group is large.

Two Parts

1. Construct an initial society and define a replacement scheme that leads to a long evolution.

- 2. Show that a long evolution implies some group is large.
- Part 1 exploits that P is $(\underline{r} + \underline{s})$ -free.

Two Parts

- 1. Construct an initial society and define a replacement scheme that leads to a long evolution.
- 2. Show that a long evolution implies some group is large.
- Part 1 exploits that P is $(\underline{r} + \underline{s})$ -free.
- Part 2 is essentially the standard analysis of the Column Construction Method of Pemmaraju, Raman, and Varadarajan.

• Let q be the height of P.

- Let q be the height of P.
- The adjusted height of y, denoted $\hat{h}(y)$, is the size of a longest chain with top element y.

・ロト・日本・モート モー うへぐ

- Let q be the height of P.
- ► The adjusted height of y, denoted h
 (y), is the size of a longest chain with top element y.
- An element z ∈ P is a y-blocker if there is a chain of size r with bottom y and top z.

- Let q be the height of P.
- ► The adjusted height of y, denoted h
 (y), is the size of a longest chain with top element y.
- An element z ∈ P is a y-blocker if there is a chain of size r with bottom y and top z.

・ロト ・ 戸 ・ モ ト ・ モ ・ うへぐ

▶ If *P* has no *y*-blocker, then define $I(y) = [\hat{h}(y), q]$.

- Let q be the height of P.
- ► The adjusted height of y, denoted h
 (y), is the size of a longest chain with top element y.
- An element z ∈ P is a y-blocker if there is a chain of size r with bottom y and top z.
- ▶ If *P* has no *y*-blocker, then define $I(y) = [\hat{h}(y), q]$.
- Otherwise define

$$I(y) = \left[\hat{h}(y), \min\{\hat{h}(z) - 1: z \text{ is a } y \text{-blocker}\}\right].$$

- Let q be the height of P.
- ► The adjusted height of y, denoted h
 (y), is the size of a longest chain with top element y.
- An element z ∈ P is a y-blocker if there is a chain of size r with bottom y and top z.
- ▶ If *P* has no *y*-blocker, then define $I(y) = [\hat{h}(y), q]$.
- Otherwise define

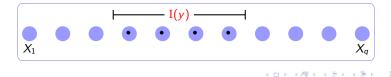
$$I(y) = \left[\hat{h}(y), \min\{\hat{h}(z) - 1: z \text{ is a } y \text{-blocker}\}\right].$$

• Note that always $\hat{h}(y) \in I(y)$.

- Let q be the height of P.
- ► The adjusted height of y, denoted h
 (y), is the size of a longest chain with top element y.
- An element z ∈ P is a y-blocker if there is a chain of size r with bottom y and top z.
- ▶ If *P* has no *y*-blocker, then define $I(y) = [\hat{h}(y), q]$.
- Otherwise define

$$I(y) = \left[\hat{h}(y), \min\{\hat{h}(z) - 1: z \text{ is a } y\text{-blocker}\}\right].$$

- Note that always $\hat{h}(y) \in I(y)$.
- Define X_1, \ldots, X_q by putting $y \in X_j$ if and only if $j \in I(y)$.



- If P has no y-blocker, then $I(y) = [\hat{h}(y), q]$.
- Otherwise $I(y) = [\hat{h}(y), \min{\{\hat{h}(z) 1: z \text{ is a } y\text{-blocker}\}}].$
- Define X_1, \ldots, X_q by putting $y \in X_j$ if and only if $j \in I(y)$.

Proposition

Each set X_k induces a subposet of height at most r - 1.

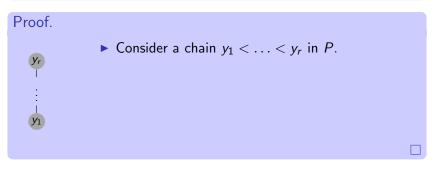
- If P has no y-blocker, then $I(y) = [\hat{h}(y), q]$.
- Otherwise $I(y) = [\hat{h}(y), \min{\{\hat{h}(z) 1: z \text{ is a } y\text{-blocker}\}}].$
- Define X_1, \ldots, X_q by putting $y \in X_j$ if and only if $j \in I(y)$.

Proposition

Each set X_k induces a subposet of height at most r - 1.

- If P has no y-blocker, then $I(y) = [\hat{h}(y), q]$.
- Otherwise $I(y) = [\hat{h}(y), \min{\{\hat{h}(z) 1: z \text{ is a } y\text{-blocker}\}}].$
- Define X_1, \ldots, X_q by putting $y \in X_j$ if and only if $j \in I(y)$.

Proposition Each set X_k induces a subposet of height at most r - 1.



- If P has no y-blocker, then $I(y) = [\hat{h}(y), q]$.
- Otherwise $I(y) = [\hat{h}(y), \min{\{\hat{h}(z) 1: z \text{ is a } y\text{-blocker}\}}].$
- Define X_1, \ldots, X_q by putting $y \in X_j$ if and only if $j \in I(y)$.

Proposition

Each set X_k induces a subposet of height at most r - 1.

Proof.

• Consider a chain $y_1 < \ldots < y_r$ in P.

▶ Note: y_r is a y_1 -blocker.

- If P has no y-blocker, then $I(y) = [\hat{h}(y), q]$.
- Otherwise $I(y) = [\hat{h}(y), \min{\{\hat{h}(z) 1: z \text{ is a } y\text{-blocker}\}}].$
- Define X_1, \ldots, X_q by putting $y \in X_j$ if and only if $j \in I(y)$.

Proposition

Each set X_k induces a subposet of height at most r - 1.

Proof.

- Consider a chain $y_1 < \ldots < y_r$ in P.
- Note: y_r is a y_1 -blocker.
- If $y_1 \in X_i$, then $i \in I(y_1)$, and so $i < \hat{h}(y_r)$.

- If P has no y-blocker, then $I(y) = [\hat{h}(y), q]$.
- Otherwise $I(y) = [\hat{h}(y), \min{\{\hat{h}(z) 1: z \text{ is a } y\text{-blocker}\}}].$
- Define X_1, \ldots, X_q by putting $y \in X_j$ if and only if $j \in I(y)$.

Proposition

Each set X_k induces a subposet of height at most r - 1.

Proof.

- Consider a chain $y_1 < \ldots < y_r$ in P.
- Note: y_r is a y_1 -blocker.
- If $y_1 \in X_i$, then $i \in I(y_1)$, and so $i < \hat{h}(y_r)$.
- If $y_r \in X_j$, then $j \in I(y_r)$, and so $\hat{h}(y_r) \leq j$.

- If P has no y-blocker, then $I(y) = [\hat{h}(y), q]$.
- Otherwise $I(y) = [\hat{h}(y), \min{\{\hat{h}(z) 1: z \text{ is a } y\text{-blocker}\}}].$
- Define X_1, \ldots, X_q by putting $y \in X_j$ if and only if $j \in I(y)$.

Proposition

Each set X_k induces a subposet of height at most r - 1.

Proof.

- Consider a chain $y_1 < \ldots < y_r$ in P.
- Note: y_r is a y_1 -blocker.
- If $y_1 \in X_i$, then $i \in I(y_1)$, and so $i < \hat{h}(y_r)$.
- If $y_r \in X_j$, then $j \in I(y_r)$, and so $\hat{h}(y_r) \leq j$.

• Therefore y_1 and y_r are not both in X_k .

- If P has no y-blocker, then $I(y) = [\hat{h}(y), q]$.
- Otherwise $I(y) = [\hat{h}(y), \min{\{\hat{h}(z) 1: z \text{ is a } y\text{-blocker}\}}].$
- Define X_1, \ldots, X_q by putting $y \in X_j$ if and only if $j \in I(y)$.

Proposition

Each set X_k induces a subposet of height at most r - 1.

Proof.

- Consider a chain $y_1 < \ldots < y_r$ in P.
- Note: y_r is a y_1 -blocker.
- If $y_1 \in X_i$, then $i \in I(y_1)$, and so $i < \hat{h}(y_r)$.
- If $y_r \in X_j$, then $j \in I(y_r)$, and so $\hat{h}(y_r) \leq j$.

• Therefore y_1 and y_r are not both in X_k .

• Define
$$S_0 = \{X_1, ..., X_q\}.$$

Incomparable Elements are in Nearby Groups

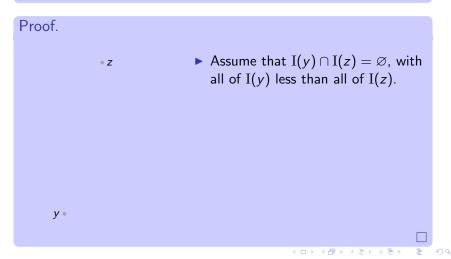
Lemma

If y and z are incomparable, then either $I(y) \cap I(z) \neq \emptyset$, or there are at most s - 2 integers between I(y) and I(z).

Incomparable Elements are in Nearby Groups

Lemma

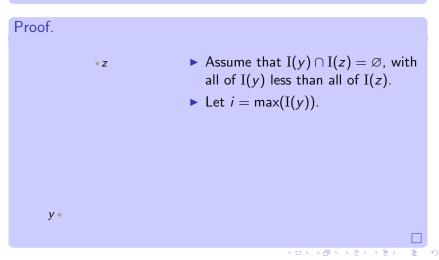
If y and z are incomparable, then either $I(y) \cap I(z) \neq \emptyset$, or there are at most s - 2 integers between I(y) and I(z).



Incomparable Elements are in Nearby Groups

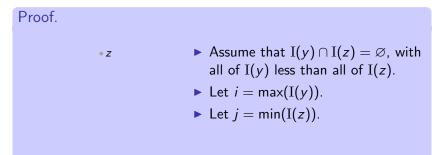
Lemma

If y and z are incomparable, then either $I(y) \cap I(z) \neq \emptyset$, or there are at most s - 2 integers between I(y) and I(z).



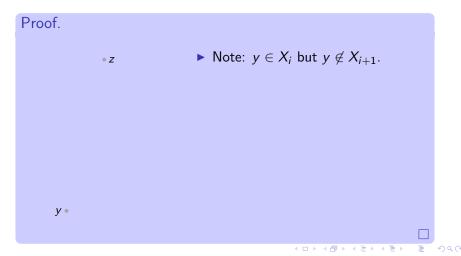
Lemma

If y and z are incomparable, then either $I(y) \cap I(z) \neq \emptyset$, or there are at most s - 2 integers between I(y) and I(z).

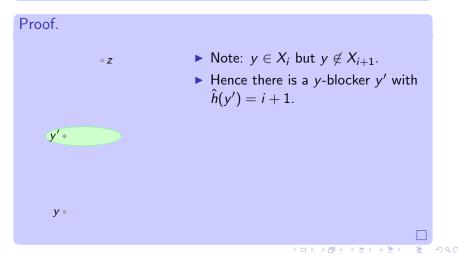


ヘロア 人間 ア 人 回 ア 人 回 ア

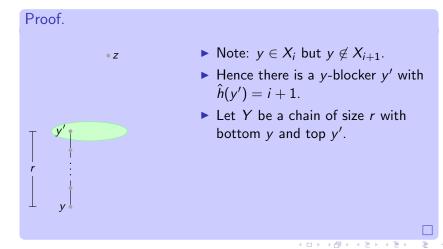
Lemma



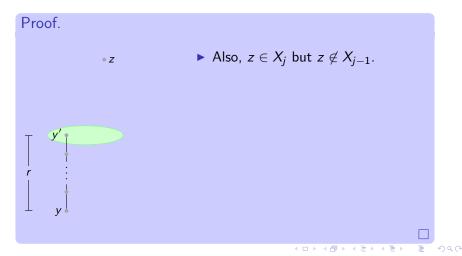
Lemma



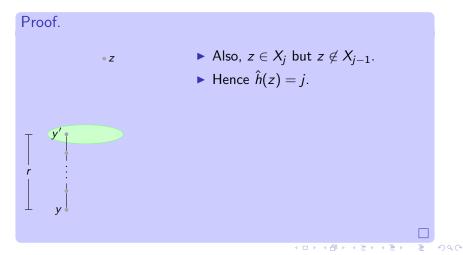
Lemma



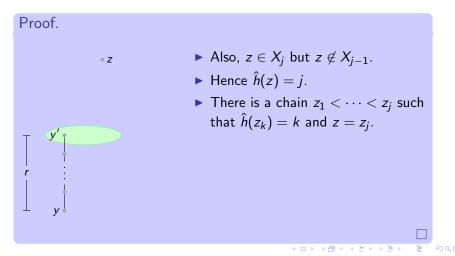
Lemma



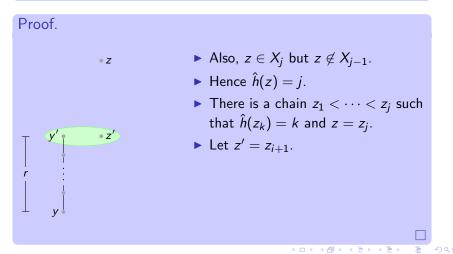
Lemma



Lemma

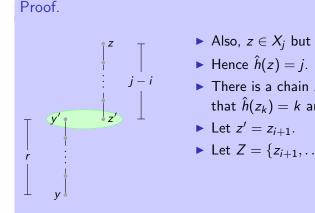


Lemma



Lemma

If y and z are incomparable, then either $I(y) \cap I(z) \neq \emptyset$, or there are at most s - 2 integers between I(y) and I(z).

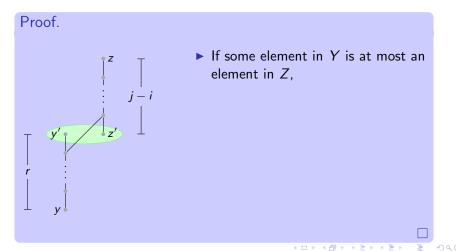


- ▶ Also, $z \in X_i$ but $z \notin X_{i-1}$.
- There is a chain $z_1 < \cdots < z_j$ such that $\hat{h}(z_k) = k$ and $z = z_i$.

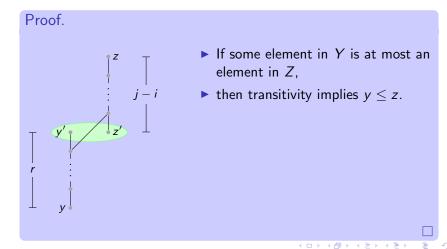
・ロン ・雪 と ・ 田 と ・ 田 と

• Let $Z = \{z_{i+1}, \ldots, z_i\}$.

Lemma

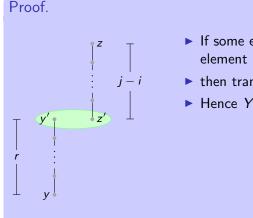


Lemma



Lemma

If y and z are incomparable, then either $I(y) \cap I(z) \neq \emptyset$, or there are at most s - 2 integers between I(y) and I(z).



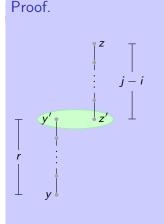
 If some element in Y is at most an element in Z,

・ロン ・ アン・ アン・ アン

- then transitivity implies $y \leq z$.
 - Hence Y and Z are disjoint.

Lemma

If y and z are incomparable, then either $I(y) \cap I(z) \neq \emptyset$, or there are at most s - 2 integers between I(y) and I(z).

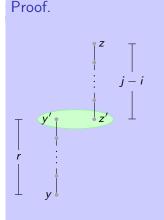


- If some element in Y is at most an element in Z,
- then transitivity implies $y \leq z$.
- ▶ Hence *Y* and *Z* are disjoint.
- If some element in Z is at most an element in Y,

・ロン ・ アン・ アン・ アン

Lemma

If y and z are incomparable, then either $I(y) \cap I(z) \neq \emptyset$, or there are at most s - 2 integers between I(y) and I(z).

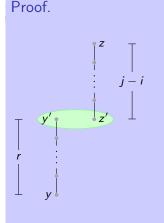


- If some element in Y is at most an element in Z,
- then transitivity implies $y \leq z$.
- ▶ Hence *Y* and *Z* are disjoint.
- If some element in Z is at most an element in Y,

・ロン ・ アン・ アン・ アン

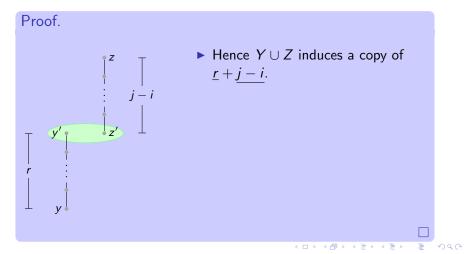
• then transitivity implies $z' \leq y'$.

Lemma

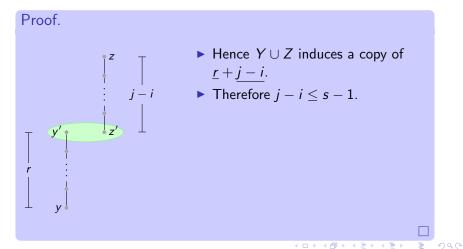


- If some element in Y is at most an element in Z,
- then transitivity implies $y \leq z$.
- ▶ Hence Y and Z are disjoint.
- If some element in Z is at most an element in Y,
- then transitivity implies $z' \leq y'$.
- But y' and z' are distinct with the same adjusted height.

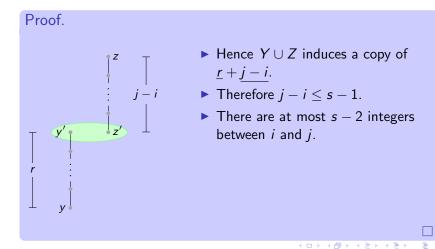
Lemma



Lemma



Lemma



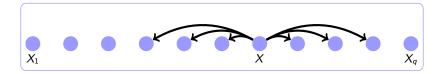
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► Recall that each group has t slots for friends, where t = 2(s - 1).

• Recall that each group has t slots for friends, where t = 2(s - 1).

▶ The replacement scheme maintains the invariant:

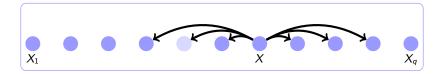
The friends of X in (S_j, F_j) are the t groups closest to X among all that survive to S_j .



• Recall that each group has t slots for friends, where t = 2(s - 1).

▶ The replacement scheme maintains the invariant:

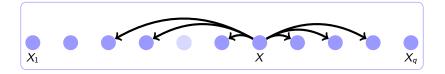
The friends of X in (S_j, F_j) are the t groups closest to X among all that survive to S_j .



• Recall that each group has t slots for friends, where t = 2(s - 1).

▶ The replacement scheme maintains the invariant:

The friends of X in (S_j, F_j) are the t groups closest to X among all that survive to S_j .



► Recall that each group has t slots for friends, where t = 2(s - 1).

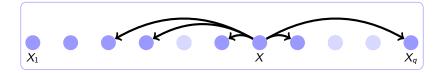
▶ The replacement scheme maintains the invariant:

The friends of X in (S_j, F_j) are the t groups closest to X among all that survive to S_j .

► Recall that each group has t slots for friends, where t = 2(s - 1).

▶ The replacement scheme maintains the invariant:

The friends of X in (S_j, F_j) are the t groups closest to X among all that survive to S_j .



► Recall that each group has t slots for friends, where t = 2(s - 1).

> The replacement scheme maintains the invariant:

The friends of X in (S_j, F_j) are the t groups closest to X among all that survive to S_j .



► Recall that each group has t slots for friends, where t = 2(s - 1).

> The replacement scheme maintains the invariant:

The friends of X in (S_j, F_j) are the t groups closest to X among all that survive to S_j .

► Recall that each group has t slots for friends, where t = 2(s - 1).

▶ The replacement scheme maintains the invariant:

The friends of X in (S_j, F_j) are the t groups closest to X among all that survive to S_j .

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Lemma

For each
$$i \ge 0$$
, we have that $\bigcup_{i>i} C_j \subseteq \bigcup_{X \in S_i} X$.

・ロト ・聞ト ・ヨト ・ヨト

э

Lemma

For each $i \ge 0$, we have that $\bigcup_{j>i} C_j \subseteq \bigcup_{X \in S_i} X$.

Proof.

▶ Induction on *i*.

Lemma

For each $i \ge 0$, we have that $\bigcup_{j>i} C_j \subseteq \bigcup_{X \in S_i} X$.

Proof.

- Induction on i.
- Case i = 0: each $y \in P$ is in a group in the initial society.

<ロト <回 > < 回 > < 回 > < 回 >

Lemma

For each
$$i \ge 0$$
, we have that $\bigcup_{j>i} C_j \subseteq \bigcup_{X \in S_i} X$.

Proof.

Suppose $i \ge 1$ and consider $\mathbf{y} \in C_j$ where j > i.

æ

Lemma

For each $i \ge 0$, we have that $\bigcup_{i>i} C_j \subseteq \bigcup_{X \in S_i} X$.

Proof.

- Suppose $i \ge 1$ and consider $y \in C_j$ where j > i.
- Find $z \in C_i$ such that y and z are incomparable.

<ロト <回ト < 回ト < 回ト

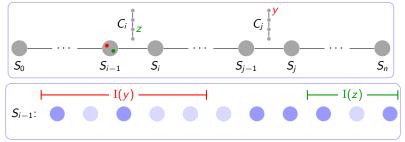
Lemma

For each $i \ge 0$, we have that $\bigcup_{i>i} C_j \subseteq \bigcup_{X \in S_i} X$.

Proof.

- Suppose $i \ge 1$ and consider $\mathbf{y} \in C_j$ where j > i.
- Find $z \in C_i$ such that y and z are incomparable.
- ▶ By induction, $\exists Y, Z \in S_{i-1}$ such that $y \in Y$ and $z \in Z$.

・ロト ・聞ト ・ヨト ・ヨト



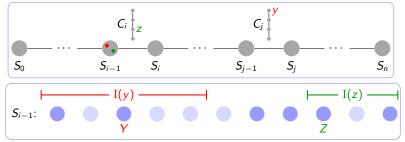
Lemma

For each $i \ge 0$, we have that $\bigcup_{j>i} C_j \subseteq \bigcup_{X \in S_i} X$.

Proof.

- Suppose $i \ge 1$ and consider $\mathbf{y} \in C_j$ where j > i.
- Find $z \in C_i$ such that y and z are incomparable.
- ▶ By induction, $\exists Y, Z \in S_{i-1}$ such that $y \in Y$ and $z \in Z$.

・ロト ・聞ト ・ヨト ・ヨト

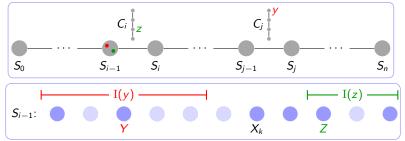


Lemma

For each $i \ge 0$, we have that $\bigcup_{j>i} C_j \subseteq \bigcup_{X \in S_i} X$.

Proof.

- Suppose $i \ge 1$ and consider $\mathbf{y} \in C_j$ where j > i.
- Find $z \in C_i$ such that y and z are incomparable.
- ▶ By induction, $\exists Y, Z \in S_{i-1}$ such that $y \in Y$ and $z \in Z$.
- Choose **Y** and Z as close as possible in X_1, \ldots, X_q .



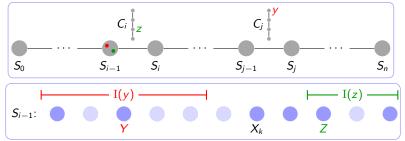
Lemma

For each $i \ge 0$, we have that $\bigcup_{j>i} C_j \subseteq \bigcup_{X \in S_i} X$.

Proof.

If X_k is a group that survives to S_{i−1} and is between Y and Z in X₁,..., X_q, then k is between I(y) and I(z).

・ロト ・聞ト ・ヨト ・ヨト



Lemma

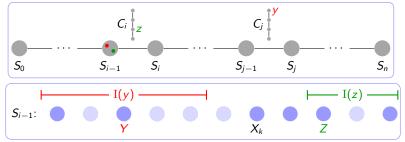
For each $i \ge 0$, we have that $\bigcup_{j>i} C_j \subseteq \bigcup_{X \in S_i} X$.

Proof.

If X_k is a group that survives to S_{i−1} and is between Y and Z in X₁,..., X_q, then k is between I(y) and I(z).

・ロト ・聞ト ・ヨト ・ヨト

• Hence at most s - 2 groups in S_{i-1} are between Y and Z.



・ロト ・聞ト ・ヨト ・ヨト

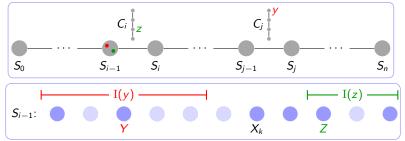
э

Lemma

For each $i \ge 0$, we have that $\bigcup_{j>i} C_j \subseteq \bigcup_{X \in S_i} X$.

Proof.

• If Y = Z, then Y makes an α -transition to S_i .

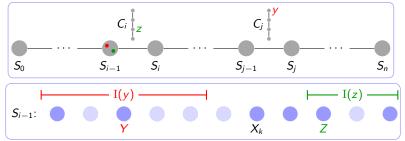


・ロト ・聞ト ・ヨト ・ヨト

Lemma

For each $i \ge 0$, we have that $\bigcup_{j>i} C_j \subseteq \bigcup_{X \in S_i} X$.

- If $\mathbf{Y} = Z$, then \mathbf{Y} makes an α -transition to S_i .
- Otherwise, **Y** lists Z as a friend in (S_{i-1}, F_{i-1}) .



Lemma

For each $i \ge 0$, we have that $\bigcup_{j>i} C_j \subseteq \bigcup_{X \in S_i} X$.

Proof.

- If Y = Z, then Y makes an α -transition to S_i .
- Otherwise, \mathbf{Y} lists Z as a friend in (S_{i-1}, F_{i-1}) .
- Hence **Y** makes an α -transition or a β -transition to S_i .

・ロト ・聞ト ・ヨト ・ヨト

э

Part 1 and Part 2

Lemma (Part 1) If C_1, \ldots, C_m is a chain partition produced by First-Fit and $(S_0, F_0), \ldots, (S_n, F_n)$ is the resulting evolution, then $n \ge m + 2$.

Lemma (Part 1) If C_1, \ldots, C_m is a chain partition produced by First-Fit and $(S_0, F_0), \ldots, (S_n, F_n)$ is the resulting evolution, then $n \ge m + 2$.

Lemma (Part 2)

Let C_1, \ldots, C_m be a chain partition produced by First-Fit and let $(S_0, F_0), \ldots, (S_n, F_n)$ be the resulting evolution. If $X \in S_{n-1}$, then $|X| \ge (n-2)/4t$.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

Proof.

• Let C_1, \ldots, C_m be a First-Fit chain partition.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

- Let C_1, \ldots, C_m be a First-Fit chain partition.
- Let $(S_0, F_0), \ldots, (S_n, F_n)$ be the resulting evolution.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

- Let C_1, \ldots, C_m be a First-Fit chain partition.
- Let $(S_0, F_0), \ldots, (S_n, F_n)$ be the resulting evolution.
- Let $X \in S_{n-1}$.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

Proof.

- Let C_1, \ldots, C_m be a First-Fit chain partition.
- Let $(S_0, F_0), \ldots, (S_n, F_n)$ be the resulting evolution.
- Let $X \in S_{n-1}$.
- Since X has height at most r 1, we have $w \ge |X|/(r 1)$.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

Proof.

- Let C_1, \ldots, C_m be a First-Fit chain partition.
- Let $(S_0, F_0), \ldots, (S_n, F_n)$ be the resulting evolution.
- Let $X \in S_{n-1}$.
- Since X has height at most r 1, we have $w \ge |X|/(r 1)$.
- By Part 2, $|X| \ge (n-2)/(4t)$, so $w \ge (n-2)/(4t(r-1))$.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

Proof.

- Let C_1, \ldots, C_m be a First-Fit chain partition.
- Let $(S_0, F_0), \ldots, (S_n, F_n)$ be the resulting evolution.
- Let $X \in S_{n-1}$.
- Since X has height at most r 1, we have $w \ge |X|/(r 1)$.
- By Part 2, $|X| \ge (n-2)/(4t)$, so $w \ge (n-2)/(4t(r-1))$.

• By Part 1, $n \ge m + 2$, so $w \ge m/(4t(r-1))$.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

- Let C_1, \ldots, C_m be a First-Fit chain partition.
- Let $(S_0, F_0), \ldots, (S_n, F_n)$ be the resulting evolution.
- Let $X \in S_{n-1}$.
- Since X has height at most r 1, we have $w \ge |X|/(r 1)$.
- By Part 2, $|X| \ge (n-2)/(4t)$, so $w \ge (n-2)/(4t(r-1))$.
- By Part 1, $n \ge m + 2$, so $w \ge m/(4t(r-1))$.
- Since t = 2(s 1), we have $w \ge m/(8(s 1)(r 1))$.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

• Improve the constant 8(r-1)(s-1) in the upper bound.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

• Improve the constant 8(r-1)(s-1) in the upper bound.

• Give lower bounds when $(r, s) \neq (2, 2)$.

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

- Improve the constant 8(r-1)(s-1) in the upper bound.
- Give lower bounds when $(r, s) \neq (2, 2)$.

Question

For which posets Q is there a function f such that First-Fit partitions a Q-free poset of width w into at most f(w) chains?

Theorem

If $r, s \ge 2$ and P is an $(\underline{r} + \underline{s})$ -free poset of width w, then First-Fit partitions P into at most 8(r - 1)(s - 1)w chains.

- Improve the constant 8(r-1)(s-1) in the upper bound.
- Give lower bounds when $(r, s) \neq (2, 2)$.

Question

For which posets Q is there a function f such that First-Fit partitions a Q-free poset of width w into at most f(w) chains?

▶ Note: Kierstead's example shows that *Q* must have width 2.