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The Online Chain Partition Problem

I A game between Spoiler and Algorithm.

I Spoiler presents an element x and all comparisons between x
and previously presented elements.

I Algorithm permanently assigns x to a chain.

Definition

The least k such that Algorithm has a strategy to partition posets
of width w into at most k chains is val(w).

Theorem

I (Kierstead (1981)): val(w) ≤ 5w−1
4

I (Szemerédi): val(w) ≥
(w+1

2

)

I (Bosek–Krawczyk (2010+)): val(w) ≤ w16 lg w

I (Bosek et al. (2010+)): val(w) ≥ (2− o(1))
(w+1

2

)
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The First-Fit Algorithm
I One simple strategy for Algorithm: First-Fit.

I First-Fit puts x in the first possible chain.

Example (Kierstead)

First-Fit uses arbitrarily many chains on posets of width 2.

I When P has additional structure, First-Fit does better.

Definition

An interval order is a poset whose elements are closed intervals on
the real line such that [a, b] < [c , d ] if and only if b < c .

Example

An Interval Order P Hasse Diagram of P
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First-Fit on Interval Orders

Definition

The least k such that First-Fit partitions interval orders of width w
into at most k chains is FF(w).



First-Fit on Interval Orders

Definition

The least k such that First-Fit partitions interval orders of width w
into at most k chains is FF(w).

Theorem (Upper Bounds)

I (Woodall (1976)): FF(w) = O(w log w)

I (Kierstead (1988)): FF(w) ≤ 40w

I (Kierstead–Qin (1995)): FF(w) ≤ 25.8w

I (Pemmaraju–Raman–Varadarajan (2003)): FF(w) ≤ 10w

I (Brightwell–Kierstead–Trotter (2003; unpub)):
FF(w) ≤ 8w

I (Narayansamy–Babu (2004)): FF(w) ≤ 8w − 3

I (Howard (2010+)): FF(w) ≤ 8w − 4



First-Fit on Interval Orders

Definition

The least k such that First-Fit partitions interval orders of width w
into at most k chains is FF(w).

Theorem (Lower Bounds)

I (Kierstead–Trotter (1981)): There is a positive ε such that
FF(w) ≥ (3 + ε)w when w is sufficiently large.

I (Chrobak–Ślusarek (1990)): FF(w) ≥ 4w − 9 when w ≥ 4.
I (Kierstead–Trotter (2004)): FF(w) ≥ 4.99w − O(1).
I (D. Smith (2009)): If ε > 0, then FF(w) ≥ (5− ε)w when

w is sufficiently large.



Beyond Interval Orders

Theorem (Fishburn (1970))

5 + 6

I The poset r + s is the disjoint union of a
chain of size r and a chain of size s.

I A poset P is an interval order if and only
if P does not contain 2 + 2 as an induced
subposet.

Theorem (Bosek–Krawczyk–Szczypka (2010))

If P is an (r + r)-free poset of width w, then First-Fit partitions P
into at most 3rw2 chains.

Question (Bosek–Krawczyk–Szczypka (2010))

Can the bound be improved from O(w2) to O(w)?
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Our Result

Theorem

If r , s ≥ 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r − 1)(s − 1)w chains.

I Let P be an (r + s)-free poset.

I A group is a set of elements of P inducing a subposet of
height at most r − 1.

I A society (S ,F ) consists of a set S of groups and a friendship
function F .

I Each group has t slots for friends, where t = 2(s − 1).

X :
1 2 3 · · · t

k k

I If X lists Y as a friend in the kth slot, then .

I If X ’s kth slot is empty, then .
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Evolution of Societies

(S0,F0) (S1,F1)
C1

(S2,F2)
C2

· · · (Sn,Fn)

I Let C1, . . . ,Cm be a chain partition produced by First-Fit.

I Extend this by defining Cj = ∅ for j > m.
I Construct the initial society (S0,F0).
I For j ≥ 1, use Cj to obtain (Sj ,Fj) from (Sj−1,Fj−1).

Key Properties

I S0 ⊇ S1 ⊇ · · · .
I If Fj−1(X , k) = Y and {X ,Y } ⊆ Sj , then Fj(X , k) = Y .

I If Fj−1(X , k) = Y and X ∈ Sj but Y 6∈ Sj , then X picks a
new friend for slot k (or leaves slot k empty) according to the
rules of a replacement scheme.

I The process ends when (Sn,Fn) is generated with Sn = ∅.
I The list (S0,F0), . . . , (Sn,Fn) is an evolution of societies.
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Transition Rules

S0 Sj−1 Cj Sj

αβ

Si

α α α

γ

I Consider a group X ∈ Sj−1.

I There are 3 ways that X can transition from Sj−1 to Sj .

Transition Rules

1. If X has nonempty intersection with Cj , then X makes an
α-transition to Sj .

2. Otherwise, if some friend of X in (Sj−1,Fj−1) has nonempty
intersection with Cj , then X makes a β-transition to Sj .

3. Otherwise, if the number of α-transitions that X makes from
Si to Sj−1 exceeds (j − i)/(2t) for some i , then X makes a
γ-transition to Sj .
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Finding a Large Group

Two Parts

1. Construct an initial society and define a replacement scheme
that leads to a long evolution.

2. Show that a long evolution implies some group is large.

I Part 1 exploits that P is (r + s)-free.

I Part 2 is essentially the standard analysis of the Column
Construction Method of Pemmaraju, Raman, and
Varadarajan.
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The Groups in the Initial Society
I Let q be the height of P.

I The adjusted height of y , denoted ĥ(y), is the size of a
longest chain with top element y .

I An element z ∈ P is a y -blocker if there is a chain of size r
with bottom y and top z .

I If P has no y -blocker, then define I(y) = [ĥ(y), q].

I Otherwise define

I(y) =
[
ĥ(y), min{ĥ(z)− 1: z is a y -blocker}

]
.

I Note that always ĥ(y) ∈ I(y).

I Define X1, . . . ,Xq by putting y ∈ Xj if and only if j ∈ I(y).

I(y)

X1 Xq
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The Groups in the Initial Society (p. 2)

I If P has no y -blocker, then I(y) = [ĥ(y), q].

I Otherwise I(y) = [ĥ(y),min{ĥ(z)− 1: z is a y -blocker}].
I Define X1, . . . ,Xq by putting y ∈ Xj if and only if j ∈ I(y).

Proposition

Each set Xk induces a subposet of height at most r − 1.

Proof.

y1

yr

...

I Consider a chain y1 < . . . < yr in P.

I Note: yr is a y1-blocker.

I If y1 ∈ Xi , then i ∈ I(y1), and so i < ĥ(yr ).

I If yr ∈ Xj , then j ∈ I(yr ), and so ĥ(yr ) ≤ j .

I Therefore y1 and yr are not both in Xk .

I Define S0 = {X1, . . . ,Xq}.
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I Otherwise I(y) = [ĥ(y),min{ĥ(z)− 1: z is a y -blocker}].
I Define X1, . . . ,Xq by putting y ∈ Xj if and only if j ∈ I(y).

Proposition

Each set Xk induces a subposet of height at most r − 1.

Proof.

y1

yr

...

I Consider a chain y1 < . . . < yr in P.

I Note: yr is a y1-blocker.

I If y1 ∈ Xi , then i ∈ I(y1), and so i < ĥ(yr ).
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I If yr ∈ Xj , then j ∈ I(yr ), and so ĥ(yr ) ≤ j .
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Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) ∩ I(z) 6= ∅, or there
are at most s − 2 integers between I(y) and I(z).

Proof.

y

z

y ′

r

z ′

j − i
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I Assume that I(y) ∩ I(z) = ∅, with
all of I(y) less than all of I(z).

I Let i = max(I(y)).

I Let j = min(I(z)).



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) ∩ I(z) 6= ∅, or there
are at most s − 2 integers between I(y) and I(z).

Proof.

y

z

y ′

r

z ′

j − i

I Assume that I(y) ∩ I(z) = ∅, with
all of I(y) less than all of I(z).

I Let i = max(I(y)).

I Let j = min(I(z)).



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) ∩ I(z) 6= ∅, or there
are at most s − 2 integers between I(y) and I(z).

Proof.

y

z

y ′

r

z ′

j − i

I Assume that I(y) ∩ I(z) = ∅, with
all of I(y) less than all of I(z).

I Let i = max(I(y)).

I Let j = min(I(z)).



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) ∩ I(z) 6= ∅, or there
are at most s − 2 integers between I(y) and I(z).

Proof.

y

z

y ′

r

z ′

j − i

I Note: y ∈ Xi but y 6∈ Xi+1.

I Hence there is a y -blocker y ′ with
ĥ(y ′) = i + 1.

I Let Y be a chain of size r with
bottom y and top y ′.
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I Also, z ∈ Xj but z 6∈ Xj−1.

I Hence ĥ(z) = j .

I There is a chain z1 < · · · < zj such

that ĥ(zk) = k and z = zj .

I Let z ′ = zi+1.

I Let Z = {zi+1, . . . , zj}.
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that ĥ(zk) = k and z = zj .

I Let z ′ = zi+1.

I Let Z = {zi+1, . . . , zj}.



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) ∩ I(z) 6= ∅, or there
are at most s − 2 integers between I(y) and I(z).

Proof.

y

z

y ′

r

z ′

j − i

I Also, z ∈ Xj but z 6∈ Xj−1.

I Hence ĥ(z) = j .
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I If some element in Y is at most an
element in Z ,

I then transitivity implies y ≤ z .

I Hence Y and Z are disjoint.

I If some element in Z is at most an
element in Y ,

I then transitivity implies z ′ ≤ y ′.

I But y ′ and z ′ are distinct with the
same adjusted height.
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I By Part 1, n ≥ m + 2, so w ≥ m/(4t(r − 1)).

I Since t = 2(s − 1), we have w ≥ m/(8(s − 1)(r − 1)).
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Open Problems

Theorem

If r , s ≥ 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r − 1)(s − 1)w chains.

I Improve the constant 8(r − 1)(s − 1) in the upper bound.

I Give lower bounds when (r , s) 6= (2, 2).

Question

For which posets Q is there a function f such that First-Fit
partitions a Q-free poset of width w into at most f (w) chains?

I Note: Kierstead’s example shows that Q must have width 2.
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