First-Fit chain partitions in partially ordered sets

Kevin G. Milans (milans@math.wvu.edu)

Michael C. Wigal

West Virginia University

2018 International Workshop on Graph Theory
Ewha Womans University
Seoul, Korea
January 4, 2018

▶ In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.

▶ In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.

▶ In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.

- ▶ In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.
- ► The height of a poset is the maximum size of a chain, and the width is the maximum size of an antichain.

- In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.
- ► The height of a poset is the maximum size of a chain, and the width is the maximum size of an antichain.

Theorem (Dilworth's Theorem)

The minimum size of a chain partition of P equals the width of P.

- ▶ In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.
- ► The height of a poset is the maximum size of a chain, and the width is the maximum size of an antichain.

Theorem (Dilworth's Theorem)

The minimum size of a chain partition of P equals the width of P.

► A Dilworth partition of is a chain partition of minimum size.

- In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.
- ► The height of a poset is the maximum size of a chain, and the width is the maximum size of an antichain.

Theorem (Dilworth's Theorem)

The minimum size of a chain partition of P equals the width of P.

► A Dilworth partition of is a chain partition of minimum size.

► The First-Fit Algorithm produces a chain partition of *P* in a greedy way.

- ► The First-Fit Algorithm produces a chain partition of *P* in a greedy way.
- ▶ The points of *P* are processed in some order.

- ► The First-Fit Algorithm produces a chain partition of *P* in a greedy way.
- ▶ The points of *P* are processed in some order.
- ▶ When processing x, First-Fit assigns x to the first chain in which x fits, introducing a new chain if necessary.

- ► The First-Fit Algorithm produces a chain partition of P in a greedy way.
- ▶ The points of *P* are processed in some order.
- ▶ When processing x, First-Fit assigns x to the first chain in which x fits, introducing a new chain if necessary.
- ▶ In terms of the width w, how many chains can First-Fit use?

► Kierstead's example shows that First-Fit can use arbitrarily many chains, even on posets of width 2.

- Kierstead's example shows that First-Fit can use arbitrarily many chains, even on posets of width 2.
- ▶ A poset Q is an subposet of P if Q can be obtained from P by deleting points.

- Kierstead's example shows that First-Fit can use arbitrarily many chains, even on posets of width 2.
- ▶ A poset Q is an subposet of P if Q can be obtained from P by deleting points.
- ▶ A poset *P* is *Q*-free if *P* does not contain *Q* as a subposet.

- Kierstead's example shows that First-Fit can use arbitrarily many chains, even on posets of width 2.
- ▶ A poset Q is an subposet of P if Q can be obtained from P by deleting points.
- ▶ A poset P is Q-free if P does not contain Q as a subposet.

Definition

Let FF(w, Q) be the maximum number of chains used by First-Fit on a Q-free poset of width w.

- Kierstead's example shows that First-Fit can use arbitrarily many chains, even on posets of width 2.
- ▶ A poset Q is an subposet of P if Q can be obtained from P by deleting points.
- ▶ A poset *P* is *Q*-free if *P* does not contain *Q* as a subposet.

Definition

Let FF(w, Q) be the maximum number of chains used by First-Fit on a Q-free poset of width w.

▶ Kierstead's example: FF(w, Q) is unbounded when Q has an antichain of size 3.

- Kierstead's example shows that First-Fit can use arbitrarily many chains, even on posets of width 2.
- ▶ A poset Q is an subposet of P if Q can be obtained from P by deleting points.
- ▶ A poset *P* is *Q*-free if *P* does not contain *Q* as a subposet.

Definition

Let FF(w, Q) be the maximum number of chains used by First-Fit on a Q-free poset of width w.

▶ Kierstead's example: FF(w, Q) is unbounded when Q has an antichain of size 3.

Theorem (Bosek-Krawczyk-Matecki (2011))

If Q has width at most 2, then FF(w, Q) is bounded.

▶ Let \underline{k} be the chain of size k.

- ▶ Let \underline{k} be the chain of size k.
- ▶ Let $P_1 + P_2$ be the poset with disjoint copies of P_1 and P_2 .

 $\blacktriangleright \text{ FF}(w, \cancel{\triangleright} 1) = w \text{ (Folklore)}$

- ▶ Let \underline{k} be the chain of size k.
- ▶ Let $P_1 + P_2$ be the poset with disjoint copies of P_1 and P_2 .

- Let \underline{k} be the chain of size k.
- Let $P_1 + P_2$ be the poset with disjoint copies of P_1 and P_2 .

- ▶ FF(w, ||x|) = w (Folklore)
- $(5 o(1))w \le FF(w, \underline{2} + \underline{2}) \le 8w$

- ▶ Let \underline{k} be the chain of size k.
- Let $P_1 + P_2$ be the poset with disjoint copies of P_1 and P_2 .

- ▶ FF(w, ||x|) = w (Folklore)
- ► $(5 o(1))w \le FF(w, 2 + 2) \le 8w$ (Lower bound: Kierstead–D. Smith–Trotter 2010)

- ▶ Let \underline{k} be the chain of size k.
- Let $P_1 + P_2$ be the poset with disjoint copies of P_1 and P_2 .

- ▶ FF(w, ||x|) = w (Folklore)
- ▶ $(5 o(1))w \le FF(w, 2 + 2) \le 8w$ (Lower bound: Kierstead–D. Smith–Trotter 2010) (Upper bound: Narayanaswamy–Babu 2008)

- ▶ Let \underline{k} be the chain of size k.
- Let $P_1 + P_2$ be the poset with disjoint copies of P_1 and P_2 .

- ▶ FF(w, ||x|) = w (Folklore)
- ▶ $(5 o(1))w \le FF(w, 2 + 2) \le 8w$ (Lower bound: Kierstead–D. Smith–Trotter 2010) (Upper bound: Narayanaswamy–Babu 2008)
- ▶ $FF(w, \underline{k} + \underline{k}) \le 16kw$ (Dujmović–Joret–Wood 2011)

- ▶ Let \underline{k} be the chain of size k.
- Let $P_1 + P_2$ be the poset with disjoint copies of P_1 and P_2 .

- ▶ FF(w, ||x|) = w (Folklore)
- ▶ $(5 o(1))w \le FF(w, 2 + 2) \le 8w$ (Lower bound: Kierstead–D. Smith–Trotter 2010) (Upper bound: Narayanaswamy–Babu 2008)
- ▶ $FF(w, \underline{k} + \underline{k}) \le 16kw$ (Dujmović–Joret–Wood 2011)
- ▶ $FF(w, \checkmark) = w^2$ (Kierstead–M. Smith 2013)

- ▶ Let \underline{k} be the chain of size k.
- Let $P_1 + P_2$ be the poset with disjoint copies of P_1 and P_2 .

- ▶ FF(w, ||x|) = w (Folklore)
- ▶ $(5 o(1))w \le FF(w, 2 + 2) \le 8w$ (Lower bound: Kierstead–D. Smith–Trotter 2010) (Upper bound: Narayanaswamy–Babu 2008)
- ▶ $FF(w, \underline{k} + \underline{k}) \le 16kw$ (Dujmović–Joret–Wood 2011)
- ▶ $FF(w, \checkmark) = w^2$ (Kierstead–M. Smith 2013)

Main Question

What properties of Q determine the behavior of FF(w, Q)?

▶ A P-wall is an ordered chain partition $(W_1, ..., W_t)$ of P produced by First-Fit.

▶ A P-wall is an ordered chain partition $(W_1, ..., W_t)$ of P produced by First-Fit.

- ▶ A P-wall is an ordered chain partition $(W_1, ..., W_t)$ of P produced by First-Fit.
- Note: if $y \in W_j$, then each chain W_i with $i \leq j$ contains a point x that is incomparable to y.

- ▶ A P-wall is an ordered chain partition $(W_1, ..., W_t)$ of P produced by First-Fit.
- Note: if $y \in W_j$, then each chain W_i with $i \leq j$ contains a point x that is incomparable to y.

- ▶ A P-wall is an ordered chain partition $(W_1, ..., W_t)$ of P produced by First-Fit.
- Note: if $y \in W_j$, then each chain W_i with $i \leq j$ contains a point x that is incomparable to y.

▶ Let P be a L_2 -free poset of width 2.

- ▶ Let P be a L_2 -free poset of width 2.
- Let (W_1, \ldots, W_t) be a P-wall.

- ▶ Let P be a L_2 -free poset of width 2.
- ▶ Let (W_1, \ldots, W_t) be a P-wall.
- We show $t \le w^2$.

- ▶ Let P be a L_2 -free poset of width 2.
- ▶ Let $(W_1, ..., W_t)$ be a P-wall.
- ▶ We show $t \le w^2$.
- ▶ Let $\{C_1, ..., C_w\}$ be a Dilworth partition of P.

- ▶ Let P be a L_2 -free poset of width 2.
- ▶ Let $(W_1, ..., W_t)$ be a P-wall.
- ▶ We show $t < w^2$.
- ▶ Let $\{C_1, \ldots, C_w\}$ be a Dilworth partition of P.
- ▶ The signature of W_i is the pair $(\alpha, \beta) \in [w]^2$ such that

- ▶ Let P be a L_2 -free poset of width 2.
- ▶ Let $(W_1, ..., W_t)$ be a P-wall.
- ▶ We show $t < w^2$.
- ▶ Let $\{C_1, \ldots, C_w\}$ be a Dilworth partition of P.
- ▶ The signature of W_i is the pair $(\alpha, \beta) \in [w]^2$ such that
 - ▶ min $W_i \in C_\alpha$ and

- ▶ Let P be a L_2 -free poset of width 2.
- ▶ Let $(W_1, ..., W_t)$ be a P-wall.
- ▶ We show $t < w^2$.
- ▶ Let $\{C_1, \ldots, C_w\}$ be a Dilworth partition of P.
- ▶ The signature of W_i is the pair $(\alpha, \beta) \in [w]^2$ such that
 - ▶ min $W_i \in C_\alpha$ and
 - ▶ $\max W_i \in C_\beta$.

▶ Claim: if i < j, then W_i and W_j have distinct signatures.

- ▶ Claim: if i < j, then W_i and W_j have distinct signatures.
- Suppose not.

- ▶ Claim: if i < j, then W_i and W_j have distinct signatures.
- Suppose not.
- ▶ Since min W_i , min $W_j \in C_\alpha$, they are comparable.

- ▶ Claim: if i < j, then W_i and W_j have distinct signatures.
- Suppose not.
- ▶ Since min W_i , min $W_j \in C_\alpha$, they are comparable.
- ▶ Since i < j we have min $W_i < \min W_j$.

- ▶ Claim: if i < j, then W_i and W_j have distinct signatures.
- Suppose not.
- ▶ Since min W_i , min $W_i \in C_\alpha$, they are comparable.
- ▶ Since i < j we have min $W_i < \min W_j$.
- ▶ Similarly max W_i > min W_j .

- ▶ Claim: if i < j, then W_i and W_j have distinct signatures.
- Suppose not.
- ▶ Since min W_i , min $W_i \in C_\alpha$, they are comparable.
- ▶ Since i < j we have min $W_i < \min W_j$.
- ▶ Similarly max W_i > min W_j .
- ▶ Let $y \in W_j$

- ▶ Claim: if i < j, then W_i and W_j have distinct signatures.
- Suppose not.
- ▶ Since min W_i , min $W_i \in C_\alpha$, they are comparable.
- ▶ Since i < j we have min $W_i < \min W_j$.
- ▶ Similarly max W_i > min W_j .
- ▶ Let $y \in W_j$, and let $x \in W_i$ be incomparable to y.

- ▶ Claim: if i < j, then W_i and W_j have distinct signatures.
- Suppose not.
- ▶ Since min W_i , min $W_i \in C_\alpha$, they are comparable.
- ▶ Since i < j we have min $W_i < \min W_j$.
- ▶ Similarly max W_i > min W_j .
- ▶ Let $y \in W_j$, and let $x \in W_i$ be incomparable to y.
- ▶ Note min $W_i < x, y < \max W_i$, completing a copy of L_2 .

Ladders

► The ladder poset, denoted L_m , has two chains $x_1 < ... < x_m$ and $y_1 < ... < y_m$ with $x_i \le y_j$ if and only if $i \le j$.

▶ The ladder poset, denoted L_m , has two chains $x_1 < \ldots < x_m$ and $y_1 < \ldots < y_m$ with $x_i \le y_j$ if and only if $i \le j$.

▶ Analysis of $FF(w, L_m)$ plays an important role in the recent breakthrough by Bosek and Krawczyk, giving a subexponential online chain partitioning algorithm.

▶ The ladder poset, denoted L_m , has two chains $x_1 < ... < x_m$ and $y_1 < ... < y_m$ with $x_i \le y_i$ if and only if $i \le j$.

- ▶ Analysis of $FF(w, L_m)$ plays an important role in the recent breakthrough by Bosek and Krawczyk, giving a subexponential online chain partitioning algorithm.
- ▶ Bosek–Krawczyk (2015): if $FF(w, L_m)$ is polynomial in w and m, then there is a polynomial online chain partitioning algorithm.

► The ladder poset, denoted L_m , has two chains $x_1 < ... < x_m$ and $y_1 < ... < y_m$ with $x_i \le y_j$ if and only if $i \le j$.

Theorem

$$\frac{1}{m-1} w^{\lg(m-1)} \le FF(w, L_m) \le w^{2.5 \lg 2w + 2 \lg m}$$

▶ The ladder poset, denoted L_m , has two chains $x_1 < \ldots < x_m$ and $y_1 < \ldots < y_m$ with $x_i \le y_j$ if and only if $i \le j$.

Theorem

$$\frac{1}{m-1} w^{\lg(m-1)} \le FF(w, L_m) \le w^{2.5 \lg 2w + 2 \lg m}$$

▶ UB: Kierstead–M. Smith (2013)

► The ladder poset, denoted L_m , has two chains $x_1 < ... < x_m$ and $y_1 < ... < y_m$ with $x_i \le y_j$ if and only if $i \le j$.

Theorem

$$\frac{1}{m-1} w^{\lg(m-1)} \le FF(w, L_m) \le w^{2.5 \lg 2w + 2 \lg m}$$

- ▶ UB: Kierstead–M. Smith (2013)
- ▶ LB: Bosek-Kierstead-Krawczyk-Matecki-M. Smith (2014+)

▶ The ladder poset, denoted L_m , has two chains $x_1 < \ldots < x_m$ and $y_1 < \ldots < y_m$ with $x_i \le y_j$ if and only if $i \le j$.

Theorem

$$\frac{1}{m-1} w^{\lg(m-1)} \le \mathrm{FF}(w, L_m) \le w^{2.5 \lg 2w + 2 \lg m}$$

▶ Note: for each fixed m, the lower bound is polynomial in w.

► The ladder poset, denoted L_m , has two chains $x_1 < ... < x_m$ and $y_1 < ... < y_m$ with $x_i \le y_j$ if and only if $i \le j$.

Theorem

$$\frac{1}{m-1} w^{\lg(m-1)} \le FF(w, L_m) \le w^{2.5 \lg 2w + 2 \lg m}$$

- ▶ Note: for each fixed m, the lower bound is polynomial in w.
- ▶ The upper bound is superpolynomial but subexponential.

Definition

▶ A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.

Definition

▶ A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.

- ▶ A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \le y$.
- ▶ Let $Q_1 \otimes Q_2$ be the poset obtained by stacking a copy of Q_2 on top of a copy of Q_1 .

- ▶ A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.
- ▶ Let $Q_1 \otimes Q_2$ be the poset obtained by stacking a copy of Q_2 on top of a copy of Q_1 .

- A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.
- ▶ Let $Q_1 \otimes Q_2$ be the poset obtained by stacking a copy of Q_2 on top of a copy of Q_1 .

- ▶ A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.
- ▶ Let $Q_1 \otimes Q_2$ be the poset obtained by stacking a copy of Q_2 on top of a copy of Q_1 .
- ▶ Define a family of posets *Q* recursively:

- ▶ A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \le y$.
- ▶ Let $Q_1 \otimes Q_2$ be the poset obtained by stacking a copy of Q_2 on top of a copy of Q_1 .
- ▶ Define a family of posets *Q* recursively:
 - 1. If Q is ladder-like, then $Q \in Q$.

- ▶ A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \le y$.
- ▶ Let $Q_1 \otimes Q_2$ be the poset obtained by stacking a copy of Q_2 on top of a copy of Q_1 .
- ▶ Define a family of posets *Q* recursively:
 - 1. If Q is ladder-like, then $Q \in Q$.
 - 2. If $Q_1, Q_2 \in \mathcal{Q}$, then $Q_1 \otimes Q_2 \in \mathcal{Q}$.

Definition

- ▶ A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.
- ▶ Let $Q_1 \otimes Q_2$ be the poset obtained by stacking a copy of Q_2 on top of a copy of Q_1 .
- ▶ Define a family of posets *Q* recursively:
 - 1. If Q is ladder-like, then $Q \in Q$.
 - 2. If $Q_1, Q_2 \in \mathcal{Q}$, then $Q_1 \otimes Q_2 \in \mathcal{Q}$.

Theorem (First-Fit Dichotomy)

▶ If $Q \in \mathcal{Q}$, then $FF(w, Q) \le w^{c_Q \log w}$ for some constant c_Q .

Definition

- ▶ A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \le y$.
- ▶ Let $Q_1 \otimes Q_2$ be the poset obtained by stacking a copy of Q_2 on top of a copy of Q_1 .
- ▶ Define a family of posets *Q* recursively:
 - 1. If Q is ladder-like, then $Q \in Q$.
 - 2. If $Q_1, Q_2 \in \mathcal{Q}$, then $Q_1 \otimes Q_2 \in \mathcal{Q}$.

Theorem (First-Fit Dichotomy)

- ▶ If $Q \in \mathcal{Q}$, then $FF(w, Q) \le w^{c_Q \log w}$ for some constant c_Q .
- ▶ If $Q \notin Q$, then $FF(w, Q) \ge 2^w 1$.

Proposition

If Q is a ladder-like m-point poset, then Q is a subposet of L_m .

Proposition

If Q is a ladder-like m-point poset, then Q is a subposet of L_m .

Proposition

If Q is a ladder-like m-point poset, then Q is a subposet of L_m .

Proposition

If Q is a ladder-like m-point poset, then Q is a subposet of \mathcal{L}_m .

Theorem (Kierstead–M. Smith (2013))

 $FF(w, L_m) \le w^{2.5 \lg 2w + 2 \lg m}$

Proposition

If Q is a ladder-like m-point poset, then Q is a subposet of \mathcal{L}_m .

Theorem (Kierstead-M. Smith (2013))

$$FF(w, L_m) \leq w^{2.5 \lg 2w + 2 \lg m}$$

Lemma (Series Construction)

$$FF(w, Q_1 \otimes Q_2) < 3(1 + FF(w, Q_1))(1 + FF(w, Q_2))w^2$$

Proposition

If Q is a ladder-like m-point poset, then Q is a subposet of \mathcal{L}_m .

Theorem (Kierstead-M. Smith (2013))

$$FF(w, L_m) \le w^{2.5 \lg 2w + 2 \lg m}$$

Lemma (Series Construction)

$$FF(w, Q_1 \otimes Q_2) < 3(1 + FF(w, Q_1))(1 + FF(w, Q_2))w^2$$

▶ Therefore $FF(w, Q) \le w^{c_Q \log w}$ when $Q \in Q$.

▶ We construct a width-w poset R_w and show that First-Fit can use $2^w - 1$ colors on R_w .

- ▶ We construct a width-w poset R_w and show that First-Fit can use $2^w 1$ colors on R_w .
- ▶ Base case: $R_1 = \underline{1}$.

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- ▶ Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.

- ▶ We construct a width-w poset R_w and show that First-Fit can use $2^w 1$ colors on R_w .
- ▶ Base case: $R_1 = \underline{1}$.
- ▶ Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.
- ▶ For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- ▶ Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.
- ▶ For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- ▶ Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.
- ▶ For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- ▶ Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.
- For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.
- For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.
- ▶ For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.
- ▶ For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.
- For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.

:

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.
- For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.
- For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- ▶ Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$
- For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.
- ▶ For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.
- First-Fit uses 2s + 1 colors, and $2s + 1 = 2^w 1$.

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.
- ▶ For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.
- First-Fit uses 2s + 1 colors, and $2s + 1 = 2^w 1$.
- ▶ Prop: a poset Q of width 2 is in Q if and only if Q is a subposet of some R_w .

- We construct a width-w poset R_w and show that First-Fit can use 2^w − 1 colors on R_w.
- ▶ Base case: $R_1 = \underline{1}$.
- ▶ Suppose $w \ge 2$. Obtain R_{w-1} and a R_{w-1} -wall W of size s, where $s = 2^{w-1} 1$.
- ▶ For $1 \le j \le s$, let W(j) be the subwall containing the first j chains of W.
- First-Fit uses 2s + 1 colors, and $2s + 1 = 2^w 1$.
- ▶ Prop: a poset Q of width 2 is in Q if and only if Q is a subposet of some R_w.
- ▶ So, if $Q \notin Q$, then $FF(w, Q) \ge 2^w 1$.

▶ The butterfly poset B has the form $\overline{2} \otimes \overline{2}$ where $\overline{2}$ is the 2-element antichain.

- ▶ The butterfly poset B has the form $\overline{2} \otimes \overline{2}$ where $\overline{2}$ is the 2-element antichain.
- Clearly $FF(w, \overline{2}) = 1$.

- ▶ The butterfly poset B has the form $\overline{2} \otimes \overline{2}$ where $\overline{2}$ is the 2-element antichain.
- ▶ Clearly $FF(w, \overline{2}) = 1$.
- ► $FF(w, Q_1 \otimes Q_2) < 3(1 + FF(w, Q_1))(1 + FF(w, Q_2))w^2$ implies $FF(w, B) \le 12w^2$.

- ▶ The butterfly poset B has the form $\overline{2} \otimes \overline{2}$ where $\overline{2}$ is the 2-element antichain.
- ▶ Clearly $FF(w, \overline{2}) = 1$.
- ► $FF(w, Q_1 \otimes Q_2) < 3(1 + FF(w, Q_1))(1 + FF(w, Q_2))w^2$ implies $FF(w, B) \le 12w^2$.

Theorem

$$FF(w, B) = (1 + o(1))w^{3/2}$$

- ▶ The butterfly poset B has the form $\overline{2} \otimes \overline{2}$ where $\overline{2}$ is the 2-element antichain.
- ▶ Clearly $FF(w, \overline{2}) = 1$.
- ► $FF(w, Q_1 \otimes Q_2) < 3(1 + FF(w, Q_1))(1 + FF(w, Q_2))w^2$ implies $FF(w, B) \le 12w^2$.

Theorem

$$FF(w, B) = (1 + o(1))w^{3/2}$$

▶ Both bounds use the Turán number of C₄.

- ▶ The butterfly poset B has the form $\overline{2} \otimes \overline{2}$ where $\overline{2}$ is the 2-element antichain.
- ▶ Clearly $FF(w, \overline{2}) = 1$.
- ► $FF(w, Q_1 \otimes Q_2) < 3(1 + FF(w, Q_1))(1 + FF(w, Q_2))w^2$ implies $FF(w, B) \le 12w^2$.

Theorem

$$FF(w, B) = (1 + o(1))w^{3/2}$$

- ▶ Both bounds use the Turán number of C₄.
- ▶ On the other hand, $\widehat{B} \notin \mathcal{Q}$ and so $FF(w, \widehat{B}) \ge 2^w 1$.

Find sharp bounds on $FF(w, \hat{B})$.

- Find sharp bounds on $FF(w, \widehat{B})$.
- ▶ For fixed m, is $FF(w, L_m)$ polynomial in w?

- Find sharp bounds on $FF(w, \widehat{B})$.
- ▶ For fixed m, is $FF(w, L_m)$ polynomial in w?
- ▶ If yes, then the Dichotomy Theorem becomes stronger:

- Find sharp bounds on $FF(w, \widehat{B})$.
- ▶ For fixed m, is $FF(w, L_m)$ polynomial in w?
- ▶ If yes, then the Dichotomy Theorem becomes stronger:
 - ▶ If $Q \in \mathcal{Q}$, then FF(w, Q) is polynomial.

- Find sharp bounds on $FF(w, \widehat{B})$.
- ▶ For fixed m, is $FF(w, L_m)$ polynomial in w?
- ▶ If yes, then the Dichotomy Theorem becomes stronger:
 - ▶ If $Q \in \mathcal{Q}$, then FF(w, Q) is polynomial.
 - ▶ Otherwise FF(w, Q) is at least exponential.

- Find sharp bounds on $FF(w, \widehat{B})$.
- ▶ For fixed m, is $FF(w, L_m)$ polynomial in w?
- ▶ If yes, then the Dichotomy Theorem becomes stronger:
 - ▶ If $Q \in \mathcal{Q}$, then FF(w, Q) is polynomial.
 - ▶ Otherwise FF(w, Q) is at least exponential.
- ▶ If no, then characterize the posets Q such that FF(w, Q) is polynomial.

- Find sharp bounds on $FF(w, \widehat{B})$.
- ▶ For fixed m, is $FF(w, L_m)$ polynomial in w?
- ▶ If yes, then the Dichotomy Theorem becomes stronger:
 - ▶ If $Q \in \mathcal{Q}$, then FF(w, Q) is polynomial.
 - ▶ Otherwise FF(w, Q) is at least exponential.
- ▶ If no, then characterize the posets Q such that FF(w, Q) is polynomial.

Thank You.