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greedy way.
» The points of P are processed in some order.

» When processing x, First-Fit assigns x to the first chain in
which x fits, introducing a new chain if necessary.
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The First-Fit Algorithm produces a chain partition of P in a
greedy way.
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The points of P are processed in some order.
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When processing x, First-Fit assigns x to the first chain in
which x fits, introducing a new chain if necessary.

v

In terms of the width w, how many chains can First-Fit use?



Kierstead's First-Fit Example



Kierstead's First-Fit Example



Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example

o___




Kierstead's First-Fit Example

.__




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




Kierstead's First-Fit Example




First-Fit on restricted poset families

» Kierstead's example shows that First-Fit can use arbitrarily
many chains, even on posets of width 2.



First-Fit on restricted poset families

» Kierstead's example shows that First-Fit can use arbitrarily
many chains, even on posets of width 2.

» A poset @ is an subposet of P if @ can be obtained from P
by deleting points.



First-Fit on restricted poset families

» Kierstead's example shows that First-Fit can use arbitrarily
many chains, even on posets of width 2.

» A poset @ is an subposet of P if @ can be obtained from P
by deleting points.

> A poset P is Q-free if P does not contain @ as a subposet.



First-Fit on restricted poset families

» Kierstead's example shows that First-Fit can use arbitrarily
many chains, even on posets of width 2.

» A poset @ is an subposet of P if @ can be obtained from P
by deleting points.

> A poset P is Q-free if P does not contain @ as a subposet.

Definition
Let FF(w, Q) be the maximum number of chains used by First-Fit
on a Q-free poset of width w.



First-Fit on restricted poset families

» Kierstead's example shows that First-Fit can use arbitrarily
many chains, even on posets of width 2.

» A poset @ is an subposet of P if @ can be obtained from P
by deleting points.

> A poset P is Q-free if P does not contain @ as a subposet.

Definition
Let FF(w, Q) be the maximum number of chains used by First-Fit
on a Q-free poset of width w.

» Kierstead's example: FF(w, Q) is unbounded when @ has an
antichain of size 3.



First-Fit on restricted poset families

» Kierstead's example shows that First-Fit can use arbitrarily
many chains, even on posets of width 2.

» A poset @ is an subposet of P if @ can be obtained from P
by deleting points.

> A poset P is Q-free if P does not contain @ as a subposet.

Definition
Let FF(w, Q) be the maximum number of chains used by First-Fit
on a Q-free poset of width w.

» Kierstead's example: FF(w, Q) is unbounded when @ has an
antichain of size 3.

Theorem (Bosek—Krawczyk—Matecki (2011))
If Q has width at most 2, then FF(w, Q) is bounded.
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» Let k be the chain of size k.

| | » Let P; 4+ P> be the poset
with disjoint copies of P;
and P».
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» FF(w,i/1) = w (Folklore)

» (5—0(1))w < FF(w,2+2) < 8w
(Lower bound: Kierstead—D. Smith—Trotter 2010)
(Upper bound: Narayanaswamy—Babu 2008)

» FF(w, k + k) < 16kw (Dujmovié—Joret-Wood 2011)
» FF(w, ) = w? (Kierstead—M. Smith 2013)

Main Question
What properties of Q determine the behavior of FF(w, Q)7
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Let (W4,..., W;) be a P-wall.

We show t < w?2.

Let {Cy,..., Cy} be a Dilworth partition of P.

The signature of W; is the pair (o, 3) € [w]? such that

» min W; € C, and
» max W; € Cs.
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» Claim: if i < j, then W; and W, have distinct signatures.
» Suppose not.

» Since min W;, min W; € C,, they are comparable.

» Since i < j we have min W; < min W;.

» Similarly max W; > min W;.

» Let y € W;, and let x € W; be incomparable to y.

> Note min W; < x,y < max W;, completing a copy of L,.
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» Analysis of FF(w, L) plays an important role in the recent
breakthrough by Bosek and Krawczyk, giving a subexponential
online chain partitioning algorithm.

» Bosek—Krawczyk (2015): if FF(w, L) is polynomial in w and
m, then there is a polynomial online chain partitioning
algorithm.
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Theorem
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m —

» Note: for each fixed m, the lower bound is polynomial in w.

» The upper bound is superpolynomial but subexponential.
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Our results

Definition
» A poset Q is ladder-like if @ can be partitioned
|/| o into two chain.s X and Y such that if x € X,
y €Y, and x is comparable to y, then x < y.
>< > Let Q1 © Qo be the poset obtained by stacking a
. copy of Q> on top of a copy of Q1.
e > Define a family of posets O recursively:

1. If Q is ladder-like, then Q € Q.
Qo 2. If Q1,Q € Q then QL0 Q, € Q.

Theorem (First-Fit Dichotomy)

» If Q € Q, then FF(w, Q) < w'°8W for some constant cq.
> IfQ¢ O, then FF(w,Q) > 2% — 1.
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| Proposition
| If Q is a ladder-like m-point poset, then Q

i is a subposet of L,,.
|/
Theorem (Kierstead-M. Smith (2013))
FF(W, Lm) < W2.5Ig2w+2|gm
Lemma (Series Construction)
FF(w, Q1 © Q) < 3(1 + FF(w, Q1))(1 + FF(w, Q2))w?

» Therefore FF(w, Q) < w logw \when Q € Q.
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We construct a width-w poset R,, and
show that First-Fit can use 2% — 1 colors
on R, .

Base case: Ry = 1.

Suppose w > 2. Obtain R,,_1 and a
R, _1-wall W of size s, where
s=2w"1_1.

For 1 <j <s, let W(j) be the subwall
containing the first j chains of W.

First-Fit uses 2s 4+ 1 colors, and
2s4+1=2" —1.

Prop: a poset @ of width 2 is in Q if and
only if @ is a subposet of some R, .

So, if @ € Q, then FF(w, Q) > 2% — 1.
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Butterfly B Skewed butterfly B

» The butterfly poset B has the form 2 © 2 where 2 is the
2-element antichain.

» Clearly FF(w,2) = 1.

» FF(w, Q1 © @) < 3(1 + FF(w, Q1))(1 + FF(w, Q))w?
implies FF(w, B) < 12w?.

Theorem
FF(w, B) = (1 + o(1))w3/?

» Both bounds use the Turan number of (4.
» On the other hand, B ¢ Q and so FF(w, B) > 2% — 1.
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Skewed butterfly B

Find sharp bounds on FF(w, E)
For fixed m, is FF(w, L,,) polynomial in w?
If yes, then the Dichotomy Theorem becomes stronger:
» If Q € Q, then FF(w, Q) is polynomial.
» Otherwise FF(w, Q) is at least exponential.
If no, then characterize the posets Q such that FF(w, Q) is
polynomial.
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Skewed butterfly B

Find sharp bounds on FF(w, E)
For fixed m, is FF(w, L,,) polynomial in w?
If yes, then the Dichotomy Theorem becomes stronger:
» If Q € Q, then FF(w, Q) is polynomial.
» Otherwise FF(w, Q) is at least exponential.
If no, then characterize the posets Q such that FF(w, Q) is
polynomial.

v
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Thank You.
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