

Paths in Hypergraph Tournaments

Richard C. Devine Kevin G. Milans

West Virginia University

Discrete Mathematics Seminar
University of South Carolina
Columbia, SC
March 21, 2025

Fully Directed Hypergraphs

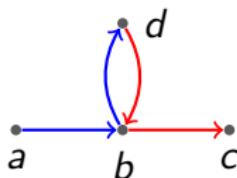
- ▶ An *r-graph* is an *r*-uniform hypergraph.

Fully Directed Hypergraphs

- ▶ An *r-graph* is an *r*-uniform hypergraph.
- ▶ In a **fully directed *r*-graph**, each edge is a tuple (u_1, \dots, u_r) of *r* distinct vertices.

Fully Directed Hypergraphs

- ▶ An *r-graph* is an *r*-uniform hypergraph.
- ▶ In a *fully directed r-graph*, each edge is a tuple (u_1, \dots, u_r) of *r* distinct vertices.
- ▶ Example: $V(G) = \{a, b, c, d\}$, $E(G) = \{(a, b, d), (d, b, c)\}$



Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

- Example $P_8^{(4)}$:

Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

- Example $P_8^{(4)}$:

Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

- Example $P_8^{(4)}$:

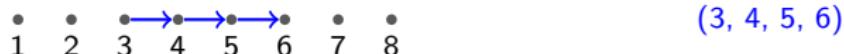
Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

- Example $P_8^{(4)}$:



Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

- Example $P_8^{(4)}$:



Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

- Example $P_8^{(4)}$:

Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

- Example $P_8^{(4)}$:

Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

- Example $P_8^{(4)}$:

$$\begin{array}{cccccccc} \bullet & \bullet \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$$

- The **tight cycle**, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i+1, \dots, i+r) : i \in \mathbb{Z}_n\}$$

Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

- Example $P_8^{(4)}$:

$$\begin{array}{cccccccc} \bullet & \bullet \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$$

- The **tight cycle**, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i+1, \dots, i+r) : i \in \mathbb{Z}_n\}$$

- Example $C_8^{(4)}$:

Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

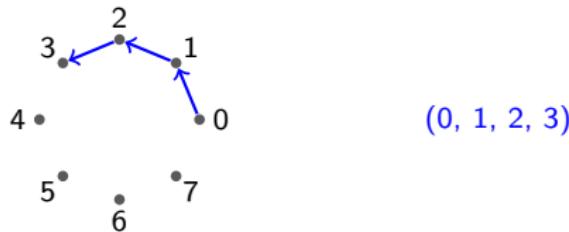
- Example $P_8^{(4)}$:

$$\begin{array}{cccccccc} \bullet & \bullet \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$$

- The **tight cycle**, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i+1, \dots, i+r) : i \in \mathbb{Z}_n\}$$

- Example $C_8^{(4)}$:



Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

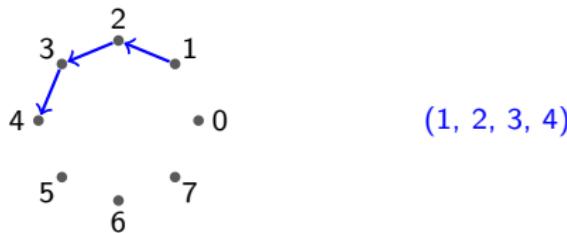
- Example $P_8^{(4)}$:

$$\begin{array}{cccccccc} \bullet & \bullet \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$$

- The **tight cycle**, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i+1, \dots, i+r) : i \in \mathbb{Z}_n\}$$

- Example $C_8^{(4)}$:



Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

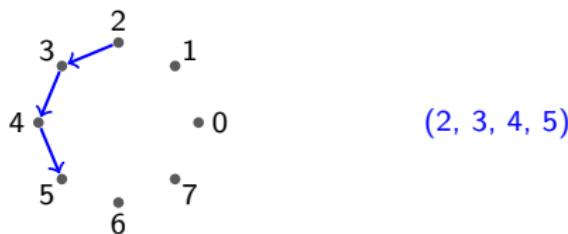
- Example $P_8^{(4)}$:

$$\begin{array}{cccccccc} \bullet & \bullet \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$$

- The **tight cycle**, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i+1, \dots, i+r) : i \in \mathbb{Z}_n\}$$

- Example $C_8^{(4)}$:



Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

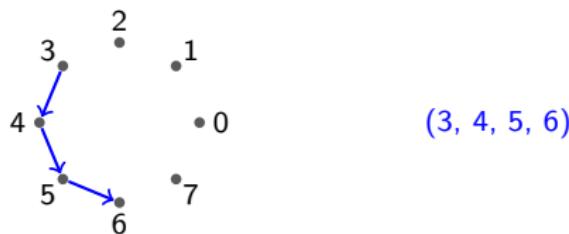
- Example $P_8^{(4)}$:

$$\begin{array}{cccccccc} \bullet & \bullet \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$$

- The **tight cycle**, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i+1, \dots, i+r) : i \in \mathbb{Z}_n\}$$

- Example $C_8^{(4)}$:



Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

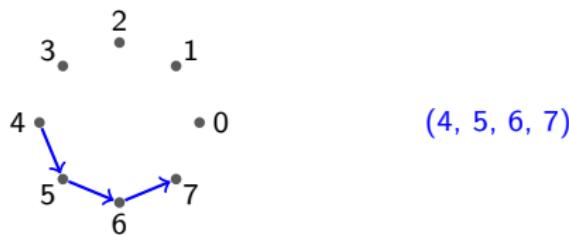
- Example $P_8^{(4)}$:

$$\begin{array}{cccccccc} \bullet & \bullet \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$$

- The **tight cycle**, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i+1, \dots, i+r) : i \in \mathbb{Z}_n\}$$

- Example $C_8^{(4)}$:



Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

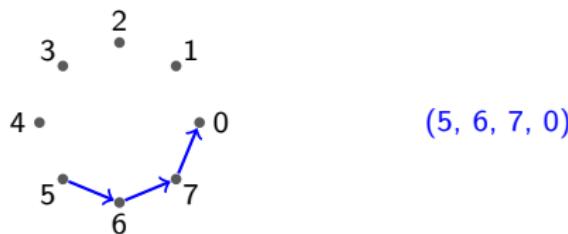
- Example $P_8^{(4)}$:

$$\begin{array}{cccccccc} \bullet & \bullet \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$$

- The **tight cycle**, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i+1, \dots, i+r) : i \in \mathbb{Z}_n\}$$

- Example $C_8^{(4)}$:



Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

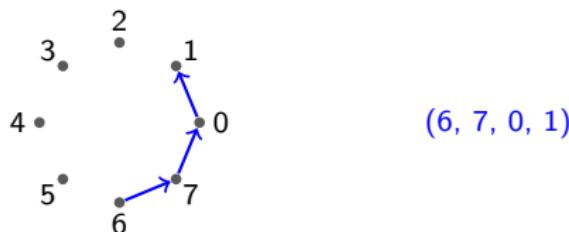
- Example $P_8^{(4)}$:

$$\begin{array}{cccccccc} \bullet & \bullet \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$$

- The **tight cycle**, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i+1, \dots, i+r) : i \in \mathbb{Z}_n\}$$

- Example $C_8^{(4)}$:



Paths and Cycles

- The **tight path**, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r) : 0 \leq i \leq n-r\}$$

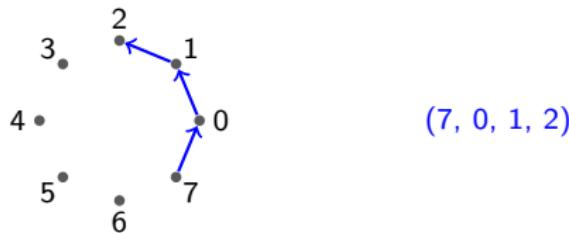
- Example $P_8^{(4)}$:

$$\begin{array}{cccccccc} \bullet & \bullet \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$$

- The **tight cycle**, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i+1, \dots, i+r) : i \in \mathbb{Z}_n\}$$

- Example $C_8^{(4)}$:



The extremal function $f(n, r, k)$

- ▶ For $0 \leq k \leq r!$, a **k -orientation** of an r -graph H is a fully directed r -graph G such that for each $e \in E(H)$, exactly k of the $r!$ orderings of the vertices in e are edges in G .

The extremal function $f(n, r, k)$

- ▶ For $0 \leq k \leq r!$, a *k*-orientation of an r -graph H is a fully directed r -graph G such that for each $e \in E(H)$, exactly k of the $r!$ orderings of the vertices in e are edges in G .
- ▶ An (r, k) -tournament is a *k*-orientation of a complete r -graph.

The extremal function $f(n, r, k)$

- ▶ For $0 \leq k \leq r!$, a **k -orientation** of an r -graph H is a fully directed r -graph G such that for each $e \in E(H)$, exactly k of the $r!$ orderings of the vertices in e are edges in G .
- ▶ An **(r, k) -tournament** is a k -orientation of a complete r -graph.
- ▶ Note: a $(2, 1)$ -tournament is just an ordinary tournament.

The extremal function $f(n, r, k)$

- ▶ For $0 \leq k \leq r!$, a **k -orientation** of an r -graph H is a fully directed r -graph G such that for each $e \in E(H)$, exactly k of the $r!$ orderings of the vertices in e are edges in G .
- ▶ An **(r, k) -tournament** is a k -orientation of a complete r -graph.
- ▶ Note: a $(2, 1)$ -tournament is just an ordinary tournament.
- ▶ Let **$f(n, r, k)$** be the max integer s such that every n -vertex (r, k) -tournament contains a copy of $P_s^{(r)}$.

The extremal function $f(n, r, k)$

- ▶ For $0 \leq k \leq r!$, a **k -orientation** of an r -graph H is a fully directed r -graph G such that for each $e \in E(H)$, exactly k of the $r!$ orderings of the vertices in e are edges in G .
- ▶ An **(r, k) -tournament** is a k -orientation of a complete r -graph.
- ▶ Note: a $(2, 1)$ -tournament is just an ordinary tournament.
- ▶ Let **$f(n, r, k)$** be the max integer s such that every n -vertex (r, k) -tournament contains a copy of $P_s^{(r)}$.
- ▶ Every tournament has a spanning path: $f(n, 2, 1) = n$

Warmup: $f(n, r, r! - 1) = n$

- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.

Warmup: $f(n, r, r! - 1) = n$

- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.
- ▶ For each set S of r vertices in G , just one ordering of S is absent in $E(G)$.

Warmup: $f(n, r, r! - 1) = n$

- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.
- ▶ For each set S of r vertices in G , just one ordering of S is absent in $E(G)$.
- ▶ Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.

Warmup: $f(n, r, r! - 1) = n$

- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.
- ▶ For each set S of r vertices in G , just one ordering of S is absent in $E(G)$.
- ▶ Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.

$x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \quad x_8 \quad x_9 \quad x_{10} \quad x_{11} \quad x_{12} \quad x_{13} \quad x_{14} \quad x_{15}$

Warmup: $f(n, r, r! - 1) = n$

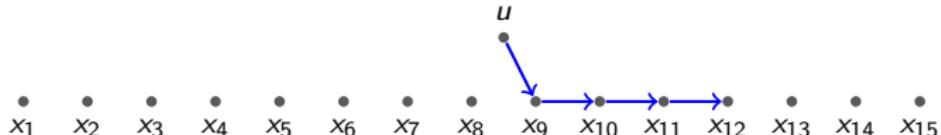
- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.
- ▶ For each set S of r vertices in G , just one ordering of S is absent in $E(G)$.
- ▶ Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.

$x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \quad x_8 \quad x_9 \quad x_{10} \quad x_{11} \quad x_{12} \quad x_{13} \quad x_{14} \quad x_{15}$

- ▶ Suppose $(u, x_i, \dots, x_{i+r-2}) \in E(G)$ for some i .

Warmup: $f(n, r, r! - 1) = n$

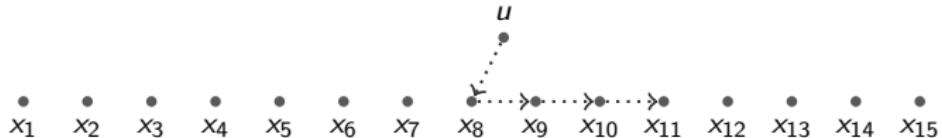
- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.
- ▶ For each set S of r vertices in G , just one ordering of S is absent in $E(G)$.
- ▶ Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.



- ▶ Suppose $(u, x_i, \dots, x_{i+r-2}) \in E(G)$ for some i .
- ▶ Let i be the least such integer.

Warmup: $f(n, r, r! - 1) = n$

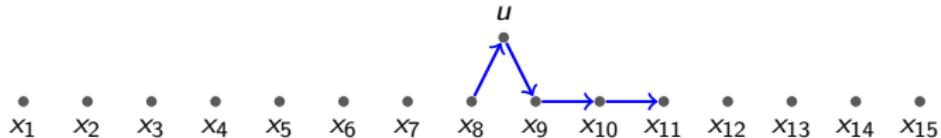
- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.
- ▶ For each set S of r vertices in G , just one ordering of S is absent in $E(G)$.
- ▶ Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.



- ▶ Suppose $(u, x_i, \dots, x_{i+r-2}) \in E(G)$ for some i .
- ▶ Let i be the least such integer.
- ▶ Note $(u, x_{i-1}, \dots, x_{i+r-3}) \notin E(G)$.

Warmup: $f(n, r, r! - 1) = n$

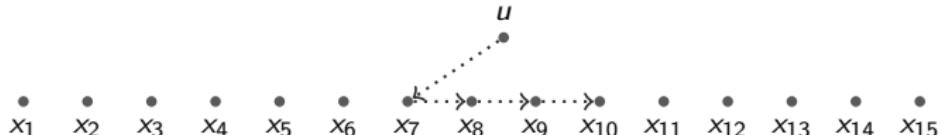
- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.
- ▶ For each set S of r vertices in G , just one ordering of S is absent in $E(G)$.
- ▶ Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.



- ▶ Suppose $(u, x_i, \dots, x_{i+r-2}) \in E(G)$ for some i .
- ▶ Let i be the least such integer.
- ▶ Note $(u, x_{i-1}, \dots, x_{i+r-3}) \notin E(G)$.
- ▶ So $(x_{i-1}, u, x_i, \dots, x_{i+r-3}) \in E(G)$.

Warmup: $f(n, r, r! - 1) = n$

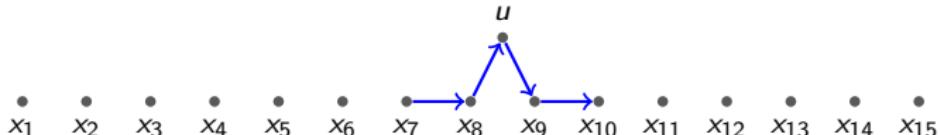
- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.
- ▶ For each set S of r vertices in G , just one ordering of S is absent in $E(G)$.
- ▶ Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.



- ▶ Suppose $(u, x_i, \dots, x_{i+r-2}) \in E(G)$ for some i .
- ▶ Let i be the least such integer.
- ▶ Note $(u, x_{i-1}, \dots, x_{i+r-3}) \notin E(G)$.
- ▶ So $(x_{i-1}, u, x_i, \dots, x_{i+r-3}) \in E(G)$.

Warmup: $f(n, r, r! - 1) = n$

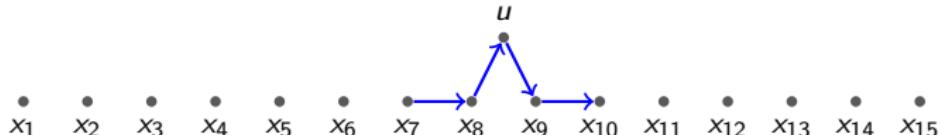
- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.
- ▶ For each set S of r vertices in G , just one ordering of S is absent in $E(G)$.
- ▶ Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.



- ▶ Suppose $(u, x_i, \dots, x_{i+r-2}) \in E(G)$ for some i .
- ▶ Let i be the least such integer.
- ▶ Note $(u, x_{i-1}, \dots, x_{i+r-3}) \notin E(G)$.
- ▶ So $(x_{i-1}, u, x_i, \dots, x_{i+r-3}) \in E(G)$.

Warmup: $f(n, r, r! - 1) = n$

- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.
- ▶ For each set S of r vertices in G , just one ordering of S is absent in $E(G)$.
- ▶ Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.



- ▶ Suppose $(u, x_i, \dots, x_{i+r-2}) \in E(G)$ for some i .
- ▶ Let i be the least such integer.
- ▶ Note $(u, x_{i-1}, \dots, x_{i+r-3}) \notin E(G)$.
- ▶ So $(x_{i-1}, u, x_i, \dots, x_{i+r-3}) \in E(G)$.
- ▶ We may insert u before x_i .

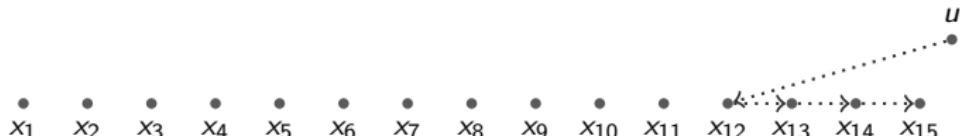
Warmup: $f(n, r, r! - 1) = n$

- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.
- ▶ For each set S of r vertices in G , just one ordering of S is absent in $E(G)$.
- ▶ Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.

- ▶ Suppose $(u, x_i, \dots, x_{i+r-2}) \in E(G)$ for some i .
- ▶ Let i be the least such integer.
- ▶ Note $(u, x_{i-1}, \dots, x_{i+r-3}) \notin E(G)$.
- ▶ So $(x_{i-1}, u, x_i, \dots, x_{i+r-3}) \in E(G)$.
- ▶ We may insert u before x_i .
- ▶ If no such i exists, then append u at the end.

Warmup: $f(n, r, r! - 1) = n$

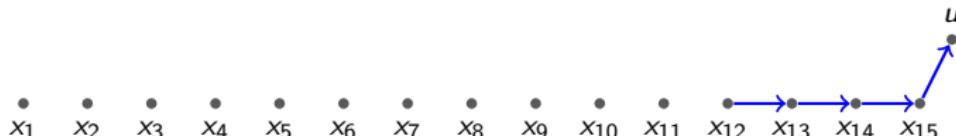
- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.
- ▶ For each set S of r vertices in G , just one ordering of S is absent in $E(G)$.
- ▶ Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.



- ▶ Suppose $(u, x_i, \dots, x_{i+r-2}) \in E(G)$ for some i .
- ▶ Let i be the least such integer.
- ▶ Note $(u, x_{i-1}, \dots, x_{i+r-3}) \notin E(G)$.
- ▶ So $(x_{i-1}, u, x_i, \dots, x_{i+r-3}) \in E(G)$.
- ▶ We may insert u before x_i .
- ▶ If no such i exists, then append u at the end.

Warmup: $f(n, r, r! - 1) = n$

- ▶ Let $2 \leq r \leq n$ and let G be an n -vertex $(r, r! - 1)$ -tournament.
- ▶ For each set S of r vertices in G , just one ordering of S is absent in $E(G)$.
- ▶ Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.



- ▶ Suppose $(u, x_i, \dots, x_{i+r-2}) \in E(G)$ for some i .
- ▶ Let i be the least such integer.
- ▶ Note $(u, x_{i-1}, \dots, x_{i+r-3}) \notin E(G)$.
- ▶ So $(x_{i-1}, u, x_i, \dots, x_{i+r-3}) \in E(G)$.
- ▶ We may insert u before x_i .
- ▶ If no such i exists, then append u at the end.

Natural Threshold Questions

- ▶ Let $f(n, r, k)$ be the max integer s such that every n -vertex (r, k) -tournament contains a copy of $P_s^{(r)}$.

Natural Threshold Questions

- ▶ Let $f(n, r, k)$ be the max integer s such that every n -vertex (r, k) -tournament contains a copy of $P_s^{(r)}$.
- ▶ As k increases from 0 to $r!$, longer paths are forced.

Natural Threshold Questions

- ▶ Let $f(n, r, k)$ be the max integer s such that every n -vertex (r, k) -tournament contains a copy of $P_s^{(r)}$.
- ▶ As k increases from 0 to $r!$, longer paths are forced.
- ▶ Fix r . What is the min. k such that $f(n, r, k)$:

Natural Threshold Questions

- ▶ Let $f(n, r, k)$ be the max integer s such that every n -vertex (r, k) -tournament contains a copy of $P_s^{(r)}$.
- ▶ As k increases from 0 to $r!$, longer paths are forced.
- ▶ Fix r . What is the min. k such that $f(n, r, k)$:
 - ▶ grows with n ?

Natural Threshold Questions

- ▶ Let $f(n, r, k)$ be the max integer s such that every n -vertex (r, k) -tournament contains a copy of $P_s^{(r)}$.
- ▶ As k increases from 0 to $r!$, longer paths are forced.
- ▶ Fix r . What is the min. k such that $f(n, r, k)$:
 - ▶ grows with n ?
 - ▶ is polynomial in n ?

Natural Threshold Questions

- ▶ Let $f(n, r, k)$ be the max integer s such that every n -vertex (r, k) -tournament contains a copy of $P_s^{(r)}$.
- ▶ As k increases from 0 to $r!$, longer paths are forced.
- ▶ Fix r . What is the min. k such that $f(n, r, k)$:
 - ▶ grows with n ?
 - ▶ is polynomial in n ?
 - ▶ is linear in n ?

Natural Threshold Questions

- ▶ Let $f(n, r, k)$ be the max integer s such that every n -vertex (r, k) -tournament contains a copy of $P_s^{(r)}$.
- ▶ As k increases from 0 to $r!$, longer paths are forced.
- ▶ Fix r . What is the min. k such that $f(n, r, k)$:
 - ▶ grows with n ?
 - ▶ is polynomial in n ?
 - ▶ is linear in n ?
 - ▶ equals n ?

Natural Threshold Questions

- ▶ Let $f(n, r, k)$ be the max integer s such that every n -vertex (r, k) -tournament contains a copy of $P_s^{(r)}$.
- ▶ As k increases from 0 to $r!$, longer paths are forced.
- ▶ Fix r . What is the min. k such that $f(n, r, k)$:
 - ▶ grows with n ?
 - ▶ is polynomial in n ?
 - ▶ is linear in n ?
 - ▶ equals n ?
- ▶ All but the first are open for general r .

The Pattern Shift Graph

- ▶ Tuples (a_1, \dots, a_t) and (b_1, \dots, b_t) **pattern-match** if, for all i, j , we have $a_i < a_j$ iff $b_i < b_j$.

The Pattern Shift Graph

- ▶ Tuples (a_1, \dots, a_t) and (b_1, \dots, b_t) **pattern-match** if, for all i, j , we have $a_i < a_j$ iff $b_i < b_j$.
- ▶ The **pattern shift graph**, denoted PSG_r , is the directed graph on the permutations of $[r]$ with u adjacent to v iff the last $r - 1$ entries in u and the first $r - 1$ entries in v pattern-match.

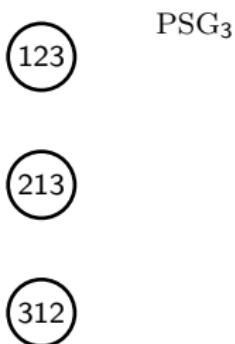
The Pattern Shift Graph

- ▶ Tuples (a_1, \dots, a_t) and (b_1, \dots, b_t) pattern-match if, for all i, j , we have $a_i < a_j$ iff $b_i < b_j$.
- ▶ The pattern shift graph, denoted PSG_r , is the directed graph on the permutations of $[r]$ with u adjacent to v iff the last $r - 1$ entries in u and the first $r - 1$ entries in v pattern-match.

PSG_3

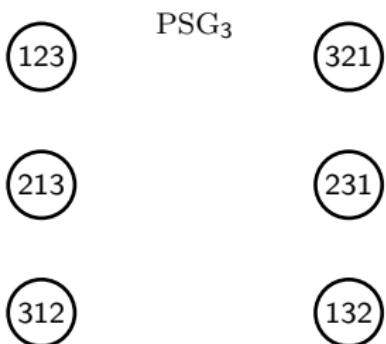
The Pattern Shift Graph

- ▶ Tuples (a_1, \dots, a_t) and (b_1, \dots, b_t) pattern-match if, for all i, j , we have $a_i < a_j$ iff $b_i < b_j$.
- ▶ The pattern shift graph, denoted PSG_r , is the directed graph on the permutations of $[r]$ with u adjacent to v iff the last $r - 1$ entries in u and the first $r - 1$ entries in v pattern-match.



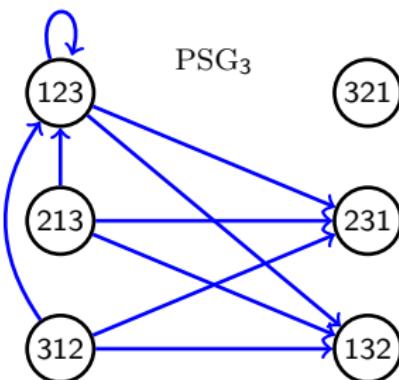
The Pattern Shift Graph

- ▶ Tuples (a_1, \dots, a_t) and (b_1, \dots, b_t) pattern-match if, for all i, j , we have $a_i < a_j$ iff $b_i < b_j$.
- ▶ The pattern shift graph, denoted PSG_r , is the directed graph on the permutations of $[r]$ with u adjacent to v iff the last $r - 1$ entries in u and the first $r - 1$ entries in v pattern-match.



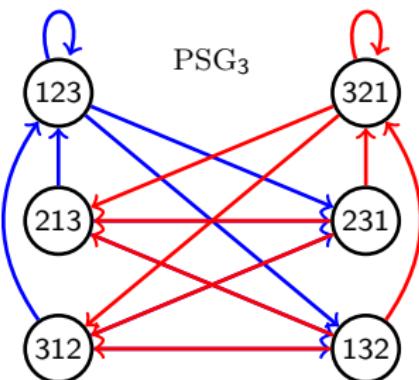
The Pattern Shift Graph

- ▶ Tuples (a_1, \dots, a_t) and (b_1, \dots, b_t) **pattern-match** if, for all i, j , we have $a_i < a_j$ iff $b_i < b_j$.
- ▶ The **pattern shift graph**, denoted PSG_r , is the directed graph on the permutations of $[r]$ with u adjacent to v iff the last $r - 1$ entries in u and the first $r - 1$ entries in v pattern-match.



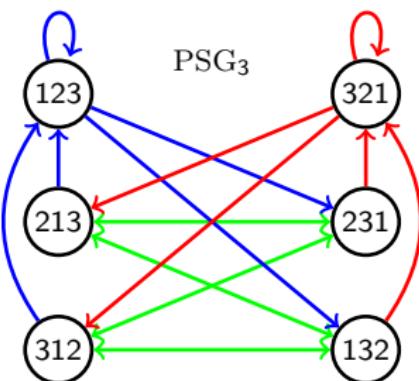
The Pattern Shift Graph

- ▶ Tuples (a_1, \dots, a_t) and (b_1, \dots, b_t) **pattern-match** if, for all i, j , we have $a_i < a_j$ iff $b_i < b_j$.
- ▶ The **pattern shift graph**, denoted PSG_r , is the directed graph on the permutations of $[r]$ with u adjacent to v iff the last $r - 1$ entries in u and the first $r - 1$ entries in v pattern-match.



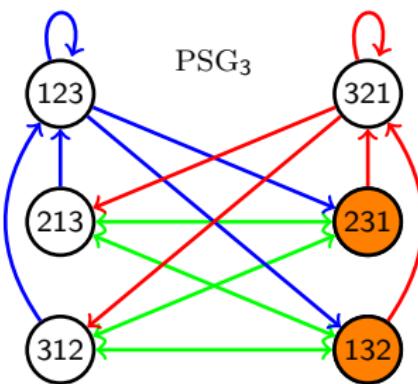
The Pattern Shift Graph

- ▶ Tuples (a_1, \dots, a_t) and (b_1, \dots, b_t) **pattern-match** if, for all i, j , we have $a_i < a_j$ iff $b_i < b_j$.
- ▶ The **pattern shift graph**, denoted PSG_r , is the directed graph on the permutations of $[r]$ with u adjacent to v iff the last $r - 1$ entries in u and the first $r - 1$ entries in v pattern-match.



The Pattern Shift Graph

- ▶ Tuples (a_1, \dots, a_t) and (b_1, \dots, b_t) **pattern-match** if, for all i, j , we have $a_i < a_j$ iff $b_i < b_j$.
- ▶ The **pattern shift graph**, denoted PSG_r , is the directed graph on the permutations of $[r]$ with u adjacent to v iff the last $r - 1$ entries in u and the first $r - 1$ entries in v pattern-match.



- ▶ Note: $\{132, 231\}$ is a max. acyclic set in PSG_3 .

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

- If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

- ▶ If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.
- ▶ Let A be an acyclic set in PSG_r of size k .

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

- ▶ If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.
- ▶ Let A be an acyclic set in PSG_r of size k .
- ▶ Construct an (r, k) -tournament G on $\{1, \dots, n\}$:

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

- ▶ If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.
- ▶ Let A be an acyclic set in PSG_r of size k .
- ▶ Construct an (r, k) -tournament G on $\{1, \dots, n\}$:
 - ▶ Put $(u_1, \dots, u_r) \in E(G)$ iff (u_1, \dots, u_r) pattern-matches some permutation in A .

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

- ▶ If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.
- ▶ Let A be an acyclic set in PSG_r of size k .
- ▶ Construct an (r, k) -tournament G on $\{1, \dots, n\}$:
 - ▶ Put $(u_1, \dots, u_r) \in E(G)$ iff (u_1, \dots, u_r) pattern-matches some permutation in A .
- ▶ $P_s^{(r)} \subseteq G$ implies $\text{PSG}_r[A]$ has a walk of size $s - (r - 1)$.

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

- ▶ If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.
- ▶ Let A be an acyclic set in PSG_r of size k .
- ▶ Construct an (r, k) -tournament G on $\{1, \dots, n\}$:
 - ▶ Put $(u_1, \dots, u_r) \in E(G)$ iff (u_1, \dots, u_r) pattern-matches some permutation in A .
- ▶ $P_s^{(r)} \subseteq G$ implies $\text{PSG}_r[A]$ has a walk of size $s - (r - 1)$.
- ▶ A is acyclic, so every walk in $\text{PSG}_r[A]$ has size at most $|A|$.

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

- ▶ If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.
- ▶ Let A be an acyclic set in PSG_r of size k .
- ▶ Construct an (r, k) -tournament G on $\{1, \dots, n\}$:
 - ▶ Put $(u_1, \dots, u_r) \in E(G)$ iff (u_1, \dots, u_r) pattern-matches some permutation in A .
- ▶ $P_s^{(r)} \subseteq G$ implies $\text{PSG}_r[A]$ has a walk of size $s - (r - 1)$.
- ▶ A is acyclic, so every walk in $\text{PSG}_r[A]$ has size at most $|A|$.
- ▶ So $s - (r - 1) \leq |A|$, giving $s \leq |A| + r - 1 = k + r - 1$.

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

- ▶ If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.
- ▶ Let A be an acyclic set in PSG_r of size k .
- ▶ Construct an (r, k) -tournament G on $\{1, \dots, n\}$:
 - ▶ Put $(u_1, \dots, u_r) \in E(G)$ iff (u_1, \dots, u_r) pattern-matches some permutation in A .
- ▶ $P_s^{(r)} \subseteq G$ implies $\text{PSG}_r[A]$ has a walk of size $s - (r - 1)$.
- ▶ A is acyclic, so every walk in $\text{PSG}_r[A]$ has size at most $|A|$.
- ▶ So $s - (r - 1) \leq |A|$, giving $s \leq |A| + r - 1 = k + r - 1$.
- ▶ If $k > a(\text{PSG}_r)$ and $n \geq R^{(r)}(n'; \binom{r!}{k})$, then $f(n, r, k) \geq n'$.

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem

For $r \geq 3$, we have

$$1 - \frac{1}{r} - O\left(\frac{\log r}{r^2 \log \log r}\right) \leq a(\text{PSG}_r)/r! \leq 1 - \frac{1}{r} - \frac{2}{r!}.$$

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem

For $r \geq 3$, we have

$$1 - \frac{1}{r} - O\left(\frac{\log r}{r^2 \log \log r}\right) \leq a(\text{PSG}_r)/r! \leq 1 - \frac{1}{r} - \frac{2}{r!}.$$

- ▶ Prop: if $k \geq r!(1 - \frac{1}{e(2r-1)})$, then $f(n, r, k) = n$.

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem

For $r \geq 3$, we have

$$1 - \frac{1}{r} - O\left(\frac{\log r}{r^2 \log \log r}\right) \leq a(\text{PSG}_r)/r! \leq 1 - \frac{1}{r} - \frac{2}{r!}.$$

- ▶ Prop: if $k \geq r!(1 - \frac{1}{e(2r-1)})$, then $f(n, r, k) = n$.

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

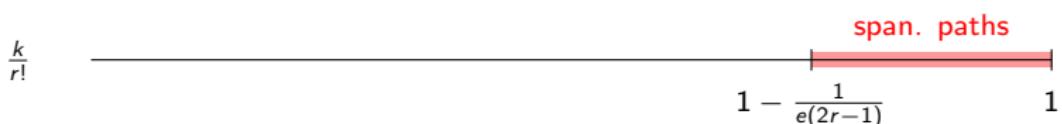
$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem

For $r \geq 3$, we have

$$1 - \frac{1}{r} - O\left(\frac{\log r}{r^2 \log \log r}\right) \leq a(\text{PSG}_r)/r! \leq 1 - \frac{1}{r} - \frac{2}{r!}.$$

- ▶ Prop: if $k \geq r!(1 - \frac{1}{e(2r-1)})$, then $f(n, r, k) = n$.



Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem

For $r \geq 3$, we have

$$1 - \frac{1}{r} - O\left(\frac{\log r}{r^2 \log \log r}\right) \leq a(\text{PSG}_r)/r! \leq 1 - \frac{1}{r} - \frac{2}{r!}.$$

- ▶ Prop: if $k \geq r!(1 - \frac{1}{e(2r-1)})$, then $f(n, r, k) = n$.

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

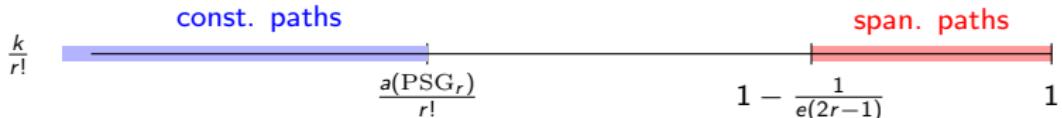
$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem

For $r \geq 3$, we have

$$1 - \frac{1}{r} - O\left(\frac{\log r}{r^2 \log \log r}\right) \leq a(\text{PSG}_r)/r! \leq 1 - \frac{1}{r} - \frac{2}{r!}.$$

- ▶ Prop: if $k \geq r!(1 - \frac{1}{e(2r-1)})$, then $f(n, r, k) = n$.



Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem

For $r \geq 3$, we have

$$1 - \frac{1}{r} - O\left(\frac{\log r}{r^2 \log \log r}\right) \leq a(\text{PSG}_r)/r! \leq 1 - \frac{1}{r} - \frac{2}{r!}.$$

- ▶ Prop: if $k \geq r!(1 - \frac{1}{e(2r-1)})$, then $f(n, r, k) = n$.

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

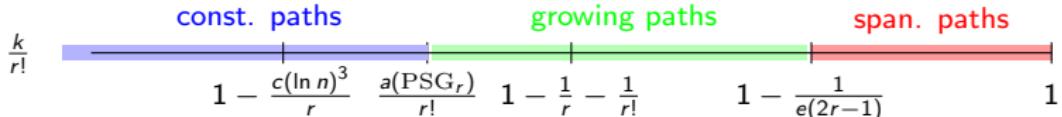
$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem

For $r \geq 3$, we have

$$1 - \frac{1}{r} - O\left(\frac{\log r}{r^2 \log \log r}\right) \leq a(\text{PSG}_r)/r! \leq 1 - \frac{1}{r} - \frac{2}{r!}.$$

- ▶ Prop: if $k \geq r!(1 - \frac{1}{e(2r-1)})$, then $f(n, r, k) = n$.



The case $r = 3$

- Recall: $a(\text{PSG}_3) = 2$.

The case $r = 3$

- ▶ Recall: $a(\text{PSG}_3) = 2$.
- ▶ So $f(n, 3, 2) = O(1)$ and $f(n, 3, 3) = \omega(1)$.

The case $r = 3$

- ▶ Recall: $a(\text{PSG}_3) = 2$.
- ▶ So $f(n, 3, 2) = O(1)$ and $f(n, 3, 3) = \omega(1)$.
- ▶ In fact, we get $f(n, 3, 2) \leq 3$ and $f(n, 3, 3) \geq \Omega(\log \log n)$.

The case $r = 3$

- ▶ Recall: $a(\text{PSG}_3) = 2$.
- ▶ So $f(n, 3, 2) = O(1)$ and $f(n, 3, 3) = \omega(1)$.
- ▶ In fact, we get $f(n, 3, 2) \leq 3$ and $f(n, 3, 3) \geq \Omega(\log \log n)$.
- ▶ Warmup: $f(n, 3, 5) = f(n, 3, 6) = n$.

The case $r = 3$

- ▶ Recall: $a(\text{PSG}_3) = 2$.
- ▶ So $f(n, 3, 2) = O(1)$ and $f(n, 3, 3) = \omega(1)$.
- ▶ In fact, we get $f(n, 3, 2) \leq 3$ and $f(n, 3, 3) \geq \Omega(\log \log n)$.
- ▶ Warmup: $f(n, 3, 5) = f(n, 3, 6) = n$.
- ▶ Interesting cases: $k = 3$ and $k = 4$.

The case $r = 3$

- ▶ Recall: $a(\text{PSG}_3) = 2$.
- ▶ So $f(n, 3, 2) = O(1)$ and $f(n, 3, 3) = \omega(1)$.
- ▶ In fact, we get $f(n, 3, 2) \leq 3$ and $f(n, 3, 3) \geq \Omega(\log \log n)$.
- ▶ Warmup: $f(n, 3, 5) = f(n, 3, 6) = n$.
- ▶ Interesting cases: $k = 3$ and $k = 4$.

Theorem

$$\Omega\left(\left(\frac{\log n}{\log \log n}\right)^{1/4}\right) \leq f(n, 3, 3) \leq O(\log n).$$

The case $r = 3$

- ▶ Recall: $a(\text{PSG}_3) = 2$.
- ▶ So $f(n, 3, 2) = O(1)$ and $f(n, 3, 3) = \omega(1)$.
- ▶ In fact, we get $f(n, 3, 2) \leq 3$ and $f(n, 3, 3) \geq \Omega(\log \log n)$.
- ▶ Warmup: $f(n, 3, 5) = f(n, 3, 6) = n$.
- ▶ Interesting cases: $k = 3$ and $k = 4$.

Theorem

$$\Omega\left(\left(\frac{\log n}{\log \log n}\right)^{1/4}\right) \leq f(n, 3, 3) \leq O(\log n).$$

Theorem

$$f(n, 3, 4) \geq \Omega(n^{1/5}).$$

The case $r = 3$

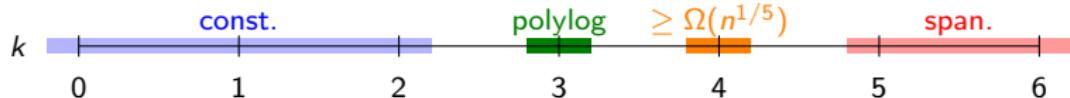
- ▶ Recall: $a(\text{PSG}_3) = 2$.
- ▶ So $f(n, 3, 2) = O(1)$ and $f(n, 3, 3) = \omega(1)$.
- ▶ In fact, we get $f(n, 3, 2) \leq 3$ and $f(n, 3, 3) \geq \Omega(\log \log n)$.
- ▶ Warmup: $f(n, 3, 5) = f(n, 3, 6) = n$.
- ▶ Interesting cases: $k = 3$ and $k = 4$.

Theorem

$$\Omega\left(\left(\frac{\log n}{\log \log n}\right)^{1/4}\right) \leq f(n, 3, 3) \leq O(\log n).$$

Theorem

$$f(n, 3, 4) \geq \Omega(n^{1/5}).$$



Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- ▶ Let G be an n -vertex $(3, 4)$ -tournament.
- ▶ Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2.

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- ▶ Let G be an n -vertex $(3, 4)$ -tournament.
- ▶ Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2.
- ▶ Let s be the max. integer such that $P_s^{(3)} \subseteq G$.

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- ▶ Let G be an n -vertex $(3, 4)$ -tournament.
- ▶ Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2.
- ▶ Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- ▶ For each (u, v) , let $P(uv)$ be a max. path ending uv .

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- ▶ Let G be an n -vertex $(3, 4)$ -tournament.
- ▶ Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2.
- ▶ Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- ▶ For each (u, v) , let $P(uv)$ be a max. path ending uv .
- ▶ Let $s_{uv} = |V(P(uv))|$.

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- ▶ Let G be an n -vertex $(3, 4)$ -tournament.
- ▶ Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2.
- ▶ Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- ▶ For each (u, v) , let $P(uv)$ be a max. path ending uv .
- ▶ Let $s_{uv} = |V(P(uv))|$.
- ▶ Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- ▶ Let G be an n -vertex $(3, 4)$ -tournament.
- ▶ Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2.
- ▶ Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- ▶ For each (u, v) , let $P(uv)$ be a max. path ending uv .
- ▶ Let $s_{uv} = |V(P(uv))|$.
- ▶ Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.
- ▶ Say (u, v, w) is **good** if $w \in V(P(uv))$. Say $\{u, v, w\}$ is **good** if at least one of its orderings is good.

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- ▶ Let G be an n -vertex $(3, 4)$ -tournament.
- ▶ Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2.
- ▶ Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- ▶ For each (u, v) , let $P(uv)$ be a max. path ending uv .
- ▶ Let $s_{uv} = |V(P(uv))|$.
- ▶ Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.
- ▶ Say (u, v, w) is **good** if $w \in V(P(uv))$. Say $\{u, v, w\}$ is **good** if at least one of its orderings is good.
- ▶ Let m be num. of good triples in G . Note $s \geq \frac{m}{n^2}$.

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- ▶ Let G be an n -vertex $(3, 4)$ -tournament.
- ▶ Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2.
- ▶ Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- ▶ For each (u, v) , let $P(uv)$ be a max. path ending uv .
- ▶ Let $s_{uv} = |V(P(uv))|$.
- ▶ Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.
- ▶ Say (u, v, w) is **good** if $w \in V(P(uv))$. Say $\{u, v, w\}$ is **good** if at least one of its orderings is good.
- ▶ Let m be num. of good triples in G . Note $s \geq \frac{m}{n^2}$.
- ▶ Let T be a max. set of vertices in G not containing a good triple, and let $t = |T|$.

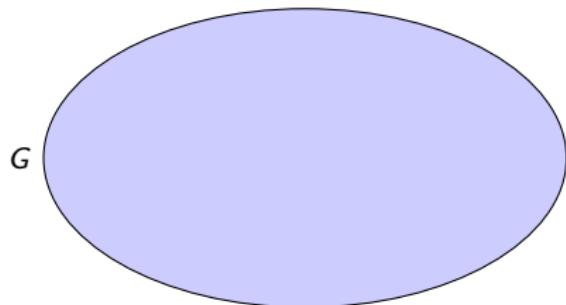
Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- ▶ Let G be an n -vertex $(3, 4)$ -tournament.
- ▶ Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2.
- ▶ Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- ▶ For each (u, v) , let $P(uv)$ be a max. path ending uv .
- ▶ Let $s_{uv} = |V(P(uv))|$.
- ▶ Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.
- ▶ Say (u, v, w) is **good** if $w \in V(P(uv))$. Say $\{u, v, w\}$ is **good** if at least one of its orderings is good.
- ▶ Let m be num. of good triples in G . Note $s \geq \frac{m}{n^2}$.
- ▶ Let T be a max. set of vertices in G not containing a good triple, and let $t = |T|$.
- ▶ deCaen: $m \geq \frac{\binom{n}{3}}{\binom{t}{2}} \geq \frac{(n-2)^3}{3t^2}$.

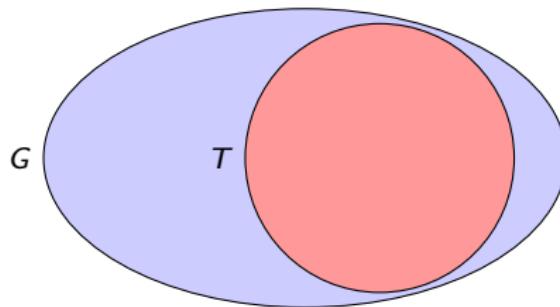
Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- ▶ Let G be an n -vertex $(3, 4)$ -tournament.
- ▶ Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2.
- ▶ Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- ▶ For each (u, v) , let $P(uv)$ be a max. path ending uv .
- ▶ Let $s_{uv} = |V(P(uv))|$.
- ▶ Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.
- ▶ Say (u, v, w) is **good** if $w \in V(P(uv))$. Say $\{u, v, w\}$ is **good** if at least one of its orderings is good.
- ▶ Let m be num. of good triples in G . Note $s \geq \frac{m}{n^2}$.
- ▶ Let T be a max. set of vertices in G not containing a good triple, and let $t = |T|$.
- ▶ deCaen: $m \geq \frac{\binom{n}{3}}{\binom{t}{2}} \geq \frac{(n-2)^3}{3t^2}$.
- ▶ $sn^2 \geq m \geq \frac{(n-2)^3}{3t^2}$ and so $t \geq \Omega((n/s)^{1/2})$.

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

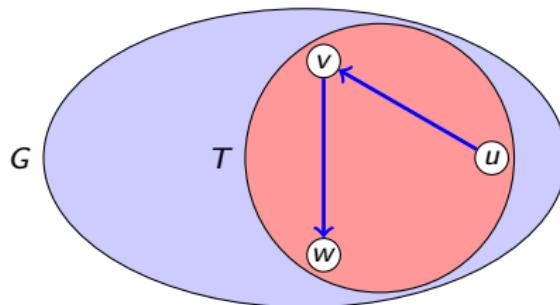


Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$



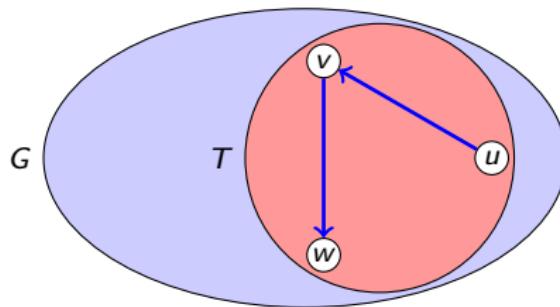
- ▶ $|T| \geq \Omega((n/s)^{1/2})$ and T has no good triple.

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$



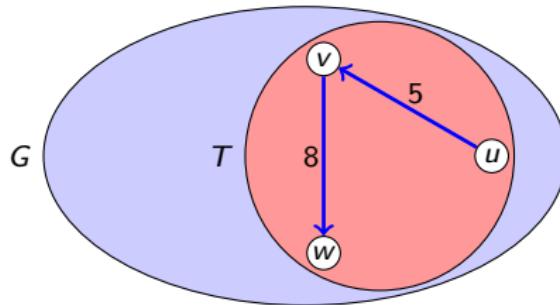
- ▶ $|T| \geq \Omega((n/s)^{1/2})$ and T has no good triple.
- ▶ Suppose $uvw \in E(G[T])$.

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$



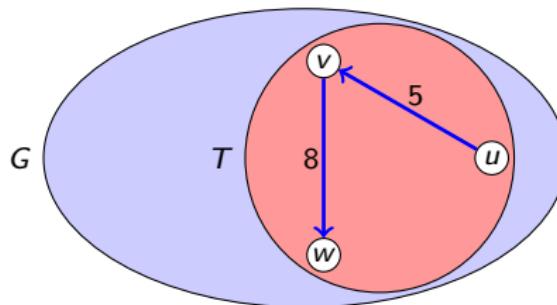
- ▶ $|T| \geq \Omega((n/s)^{1/2})$ and T has no good triple.
- ▶ Suppose $uvw \in E(G[T])$.
- ▶ Since $w \notin V(P(uv))$, the edge uvw extends $P(uv)$.

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$



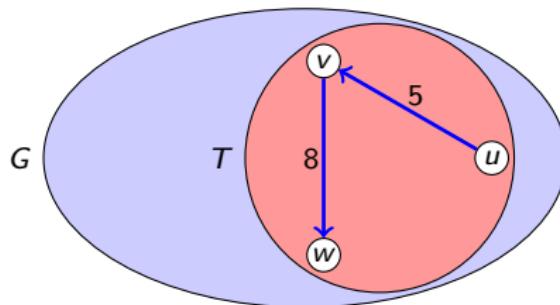
- ▶ $|T| \geq \Omega((n/s)^{1/2})$ and T has no good triple.
- ▶ Suppose $uvw \in E(G[T])$.
- ▶ Since $w \notin V(P(uv))$, the edge uvw extends $P(uv)$.
- ▶ So $s_{vw} > s_{uv}$. Thus $G[T]$ is acyclic.

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$



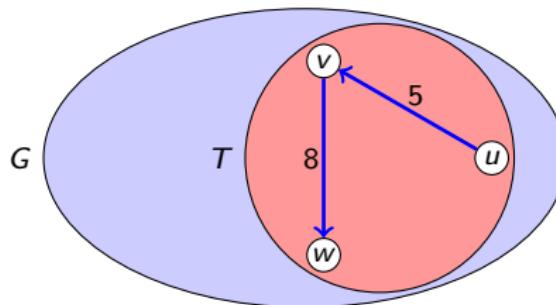
- ▶ $|T| \geq \Omega((n/s)^{1/2})$ and T has no good triple.
- ▶ Suppose $uvw \in E(G[T])$.
- ▶ Since $w \notin V(P(uv))$, the edge uvw extends $P(uv)$.
- ▶ So $s_{vw} > s_{uv}$. Thus $G[T]$ is acyclic.
- ▶ Lemma: The maximum paths in a $(3, 4)$ -tournament with no $C_3^{(3)}$ are pairwise intersecting.

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$



- ▶ $|T| \geq \Omega((n/s)^{1/2})$ and T has no good triple.
- ▶ Suppose $uvw \in E(G[T])$.
- ▶ Since $w \notin V(P(uv))$, the edge uvw extends $P(uv)$.
- ▶ So $s_{vw} > s_{uv}$. Thus $G[T]$ is acyclic.
- ▶ Lemma: The maximum paths in a $(3, 4)$ -tournament with no $C_3^{(3)}$ are pairwise intersecting.
- ▶ This implies $G[T]$ contains a tight path on $\lfloor \sqrt{|T|} \rfloor$ vertices.

Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$



- ▶ $|T| \geq \Omega((n/s)^{1/2})$ and T has no good triple.
- ▶ Suppose $uvw \in E(G[T])$.
- ▶ Since $w \notin V(P(uv))$, the edge uvw extends $P(uv)$.
- ▶ So $s_{vw} > s_{uv}$. Thus $G[T]$ is acyclic.
- ▶ Lemma: The maximum paths in a $(3, 4)$ -tournament with no $C_3^{(3)}$ are pairwise intersecting.
- ▶ This implies $G[T]$ contains a tight path on $\lfloor \sqrt{|T|} \rfloor$ vertices.
- ▶ So G has a path on at least $\max\{s, \Omega((n/s)^{1/4})\}$ vertices.

Growing paths in general fully directed r -graphs

- ▶ Let $n_{(r)} = n(n - 1) \cdots (n - (r - 1)) = (1 - o(1))n^r$.

Growing paths in general fully directed r -graphs

- ▶ Let $n_{(r)} = n(n - 1) \cdots (n - (r - 1)) = (1 - o(1))n^r$.

Theorem

For each r and each positive ε , for sufficiently large n , there is an n -vertex fully directed r -graph G with $|E(G)| \geq (1 - \frac{1}{r} - \varepsilon)n_{(r)}$ such that every path in G has size at most r^3/ε .

Growing paths in general fully directed r -graphs

- ▶ Let $n_{(r)} = n(n - 1) \cdots (n - (r - 1)) = (1 - o(1))n^r$.

Theorem

For each r and each positive ε , for sufficiently large n , there is an n -vertex fully directed r -graph G with $|E(G)| \geq (1 - \frac{1}{r} - \varepsilon)n_{(r)}$ such that every path in G has size at most r^3/ε .

Theorem

For each r and each s , for all sufficiently large n , every n -vertex fully directed r -graph G with $|E(G)| \geq (1 - \frac{1}{r})n_{(r)}$ contains a path of size s .

Growing paths in general fully directed r -graphs

- ▶ Let $n_{(r)} = n(n - 1) \cdots (n - (r - 1)) = (1 - o(1))n^r$.

Theorem

For each r and each positive ε , for sufficiently large n , there is an n -vertex fully directed r -graph G with $|E(G)| \geq (1 - \frac{1}{r} - \varepsilon)n_{(r)}$ such that every path in G has size at most r^3/ε .

Theorem

For each r and each s , for all sufficiently large n , every n -vertex fully directed r -graph G with $|E(G)| \geq (1 - \frac{1}{r})n_{(r)}$ contains a path of size s .

- ▶ So $(1 - \frac{1}{r})$ is the **density threshold** for growing paths in fully directed r -graphs.

Growing paths in general fully directed r -graphs

- ▶ Let $n_{(r)} = n(n-1)\cdots(n-(r-1)) = (1-o(1))n^r$.

Theorem

For each r and each positive ε , for sufficiently large n , there is an n -vertex fully directed r -graph G with $|E(G)| \geq (1 - \frac{1}{r} - \varepsilon)n_{(r)}$ such that every path in G has size at most r^3/ε .

Theorem

For each r and each s , for all sufficiently large n , every n -vertex fully directed r -graph G with $|E(G)| \geq (1 - \frac{1}{r})n_{(r)}$ contains a path of size s .

- ▶ So $(1 - \frac{1}{r})$ is the **density threshold** for growing paths in fully directed r -graphs.
- ▶ With $\frac{k}{r!} = 1 - \frac{1}{r} - \frac{1}{r!}$, (r, k) -tournaments have growing paths.

Growing paths in general fully directed r -graphs

- ▶ Let $n_{(r)} = n(n-1)\cdots(n-(r-1)) = (1-o(1))n^r$.

Theorem

For each r and each positive ε , for sufficiently large n , there is an n -vertex fully directed r -graph G with $|E(G)| \geq (1 - \frac{1}{r} - \varepsilon)n_{(r)}$ such that every path in G has size at most r^3/ε .

Theorem

For each r and each s , for all sufficiently large n , every n -vertex fully directed r -graph G with $|E(G)| \geq (1 - \frac{1}{r})n_{(r)}$ contains a path of size s .

- ▶ So $(1 - \frac{1}{r})$ is the **density threshold** for growing paths in fully directed r -graphs.
- ▶ With $\frac{k}{r!} = 1 - \frac{1}{r} - \frac{1}{r!}$, (r, k) -tournaments have growing paths.
- ▶ The even distribution requirement of tournaments forces growing paths at lower densities.

Open Problems

- ▶ Improve the bounds $\Omega(n^{1/5}) \leq f(n, 3, 4) \leq n$.

Open Problems

- ▶ Improve the bounds $\Omega(n^{1/5}) \leq f(n, 3, 4) \leq n$.
- ▶ Does every $(3, 4)$ -tournament have a spanning path?

Open Problems

- ▶ Improve the bounds $\Omega(n^{1/5}) \leq f(n, 3, 4) \leq n$.
- ▶ Does every $(3, 4)$ -tournament have a spanning path?
- ▶ Improve the bounds
$$(1 - \frac{c(\ln r)^3}{r})r! \leq k = a(\text{PSG}_r) \leq (1 - \frac{1}{r} - \frac{2}{r!})r!$$
 on the threshold k for growing paths in (r, k) -tournaments.

Open Problems

- ▶ Improve the bounds $\Omega(n^{1/5}) \leq f(n, 3, 4) \leq n$.
- ▶ Does every $(3, 4)$ -tournament have a spanning path?
- ▶ Improve the bounds
$$(1 - \frac{c(\ln r)^3}{r})r! \leq k = a(\text{PSG}_r) \leq (1 - \frac{1}{r} - \frac{2}{r!})r!$$
 on the threshold k for growing paths in (r, k) -tournaments.
- ▶ There are polynomial paths in fully directed 3-graphs at the density threshold $2/3$.

Open Problems

- ▶ Improve the bounds $\Omega(n^{1/5}) \leq f(n, 3, 4) \leq n$.
- ▶ Does every $(3, 4)$ -tournament have a spanning path?
- ▶ Improve the bounds
$$(1 - \frac{c(\ln r)^3}{r})r! \leq k = a(\text{PSG}_r) \leq (1 - \frac{1}{r} - \frac{2}{r!})r!$$
 on the threshold k for growing paths in (r, k) -tournaments.
- ▶ There are polynomial paths in fully directed 3-graphs at the density threshold $2/3$.
- ▶ For $r \geq 4$, do fully directed r -graphs at the growing paths density threshold $1 - \frac{1}{r}$ also have polynomial paths?

Open Problems

- ▶ Improve the bounds $\Omega(n^{1/5}) \leq f(n, 3, 4) \leq n$.
- ▶ Does every $(3, 4)$ -tournament have a spanning path?
- ▶ Improve the bounds
$$(1 - \frac{c(\ln r)^3}{r})r! \leq k = a(\text{PSG}_r) \leq (1 - \frac{1}{r} - \frac{2}{r!})r!$$
 on the threshold k for growing paths in (r, k) -tournaments.
- ▶ There are polynomial paths in fully directed 3-graphs at the density threshold $2/3$.
- ▶ For $r \geq 4$, do fully directed r -graphs at the growing paths density threshold $1 - \frac{1}{r}$ also have polynomial paths?
- ▶ What is the threshold on k for (r, k) -tournaments to have polynomial paths? spanning paths?

Thank You.