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Fully Directed Hypergraphs

» An r-graph is an r-uniform hypergraph.

» In a fully directed r-graph, each edge is a tuple (u1,..., u,) of
r distinct vertices.

> Example: V(G) = {a, b, c,d}, E(G) = {(a, b,d), (d. b, c)}

Od
——e—>e

a b c



Paths and Cycles
> The tight path, denoted by P\, is given by:

VPS)y ={1,....n}
E(PSY={(i+1,....i+r): 0<i<n—r}



Paths and Cycles
> The tight path, denoted by P\, is given by:

VPS)y ={1,....n}
E(PSY={(i+1,....i+r): 0<i<n—r}

> Example Pé4):



Paths and Cycles
> The tight path, denoted by P\, is given by:

VPS)y ={1,....n}
E(PSY={(i+1,....i+r): 0<i<n—r}

> Example Pé4):
(1,2 3,4)



Paths and Cycles
> The tight path, denoted by P\, is given by:

VPS)y ={1,....n}
E(PSY={(i+1,....i+r): 0<i<n—r}

> Example Pé4):
(2,3,4,5)



Paths and Cycles
> The tight path, denoted by P\, is given by:
VPS)y ={1,....n}
E(PY={(i+1,....i+r):0<i<n—r}
> Example Pé4):

° ° o—>e—Hre—>e °

. (3,4,5,6)
1 2 3 4 5 6 7 8



Paths and Cycles
> The tight path, denoted by P\, is given by:
VPS)y ={1,....n}
E(PY={(i+1,....i+r):0<i<n—r}

> Example Pé4):

° ° ° o—>e—Hre—>e ° (4, 5, 6, 7)
1 2 3 4 5 6 7 8



Paths and Cycles
> The tight path, denoted by P\, is given by:
VPS)y ={1,....n}
E(PY={(i+1,....i+r):0<i<n—r}

> Example Pé4):

° ° ° ° o—>e—He—>e (5, 6, 7, 8)
1 2 3 4 5 6 7 8



Paths and Cycles
> The tight path, denoted by P\, is given by:
VPS)y ={1,....n}
E(PY={(i+1,....i+r):0<i<n—r}
> Example Pé4):

e e e o o
1 2 3 4 5 6 7 8



Paths and Cycles
> The tight path, denoted by P\, is given by:
VPS)y ={1,....n}
E(PY={(i+1,....i+r):0<i<n—r}
> Example Pé4):

1 2 3 4 5 6 7 8

» The tight cycle, denoted by Cr(,r), is given by:
VcNY =z, E(CY={(i+1,....i+r): i€y}



Paths and Cycles
> The tight path, denoted by P\, is given by:
VPS)y ={1,....n}
E(PY={(i+1,....i+r):0<i<n—r}
> Example Pé4):

1 2 3 4 5 6 7 8

» The tight cycle, denoted by Cr(,r), is given by:
VcNY =z, E(CY={(i+1,....i+r): i€y}

> Example Cé4):



Paths and Cycles
> The tight path, denoted by P\, is given by:
VPS)y ={1,....n}
E(PY={(i+1,....i+r):0<i<n—r}
> Example Pé4):

1 2 3 4 5 6 7 8

» The tight cycle, denoted by Cr(,r), is given by:
VcNY =z, E(CY={(i+1,....i+r): i€y}
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Paths and Cycles
> The tight path, denoted by P\, is given by:

VPS)y ={1,....n}
E(PY={(i+1,....i+r):0<i<n—r}
> Example Pé4):
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> The tight path, denoted by P\, is given by:

VPS)y ={1,....n}
E(PY={(i+1,....i+r):0<i<n—r}
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Paths and Cycles
> The tight path, denoted by P\, is given by:

VPS)y ={1,....n}
E(PY={(i+1,....i+r):0<i<n—r}
> Example Pé4):

1 2 3 4 5 6 7 8

» The tight cycle, denoted by Cr(,r), is given by:
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Paths and Cycles
> The tight path, denoted by P\, is given by:

VPS)y ={1,....n}
E(PY={(i+1,....i+r):0<i<n—r}
> Example Pé4):

1 2 3 4 5 6 7 8

» The tight cycle, denoted by Cr(,r), is given by:
VcNY =z, E(CY={(i+1,....i+r): i€y}

> Example Cé4):
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Paths and Cycles
> The tight path, denoted by P\, is given by:
VPS)y ={1,....n}
E(PY={(i+1,....i+r):0<i<n—r}
> Example Pé4):

1 2 3 45 6 7 8
» The tight cycle, denoted by Cr(,r), is given by:

VcNY =z, E(CY={(i+1,....i+r): i€y}

> Example Cé4):
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Paths and Cycles
> The tight path, denoted by P\, is given by:
VPS)y ={1,....n}
E(PY={(i+1,....i+r):0<i<n—r}
> Example Pé4):

1 2 3 45 6 7 8
» The tight cycle, denoted by Cr(,r), is given by:

VcNY =z, E(CY={(i+1,....i+r): i€y}

> Example Cé4):

4e 0 (7,0, 1, 2)
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the r! orderings of the vertices in e are edges in G.
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The extremal function f(n, r, k)
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For 0 < k < r!, a k-orientation of an r-graph H is a fully
directed r-graph G such that for each e € E(H), exactly k of
the r! orderings of the vertices in e are edges in G.

An (r, k)-tournament is a k-orientation of a complete r-graph.
Note: a (2,1)-tournament is just an ordinary tournament.

Let f(n,r, k) be the max integer s such that every n-vertex
(r, k)-tournament contains a copy of P

Every tournament has a spanning path: f(n,2,1) =n
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Let 2 < r < nandlet G be an n-vertex (r, r! —1)-tournament.

For each set S of r vertices in G, just one ordering of S is
absent in E(G).

Let u € V(G) and apply induction to obtain a spanning path
X1+ - Xp—1in G — u.
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Let 2 < r < nandlet G be an n-vertex (r, r! —1)-tournament.

For each set S of r vertices in G, just one ordering of S is
absent in E(G).

Let u € V(G) and apply induction to obtain a spanning path
X1+ - Xp—1in G — u.
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Let 2 < r < nandlet G be an n-vertex (r, r! —1)-tournament.

For each set S of r vertices in G, just one ordering of S is
absent in E(G).

Let u € V(G) and apply induction to obtain a spanning path
X1+ - Xp—1in G — u.

u
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Let 2 < r < nandlet G be an n-vertex (r, r! —1)-tournament.

For each set S of r vertices in G, just one ordering of S is
absent in E(G).

Let u € V(G) and apply induction to obtain a spanning path
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Let 2 < r < nandlet G be an n-vertex (r, r! —1)-tournament.

For each set S of r vertices in G, just one ordering of S is
absent in E(G).

Let u € V(G) and apply induction to obtain a spanning path
X1+ - Xp—1in G — u.
u
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Suppose (U, Xj, ..., Xi+r—2) € E(G) for some i.
Let / be the least such integer.
Note (U,X,'_]_7 R 7Xi+r—3) ¢ E(G)
So (X,'_1, u, X, ... ,X;+r_3) S E(G)
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Warmup: f(n,r,rl —1)=n

>
>

vVvyVvVvyypy

Let 2 < r < nandlet G be an n-vertex (r, r! —1)-tournament.
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If no such i exists, then append u at the end.
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» Let 2 < r < nandlet G be an n-vertex (r, r! —1)-tournament.

» For each set S of r vertices in G, just one ordering of S is
absent in E(G).
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Let 2 < r < nandlet G be an n-vertex (r, r! —1)-tournament.

For each set S of r vertices in G, just one ordering of S is
absent in E(G).

Let u € V(G) and apply induction to obtain a spanning path
X1+ - Xp—1in G — u.
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Let / be the least such integer.
Note (v, xj—1,...,Xi+r—3) € E(G).
So (Xi—1, U, Xi, -, Xi+r—3) € E(G).
We may insert u before x;.

If no such i exists, then append u at the end.
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» Let f(n,r, k) be the max integer s such that every n-vertex

(r, k)-tournament contains a copy of Pgr).

» As k increases from 0 to r!, longer paths are forced.
» Fix r. What is the min. k such that f(n, r, k):
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Natural Threshold Questions

» Let f(n,r, k) be the max integer s such that every n-vertex
(r, k)-tournament contains a copy of Pgr).
» As k increases from 0 to r!, longer paths are forced.

» Fix r. What is the min. k such that f(n, r, k):

» grows with n?

» is polynomial in n?
» is linear in n?

» equals n?

» All but the first are open for general r.
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The Pattern Shift Graph

» Tuples (a1,...,a:) and (b1,..., bt) pattern-match if, for all
i,j, we have a; < aj iff by < bj.

» The pattern shift graph, denoted PSG,, is the directed graph
on the permutations of [r] with u adjacent to v iff the last
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The Pattern Shift Graph

» Tuples (a1,...,a:) and (b1,..., bt) pattern-match if, for all
i,j, we have a; < aj iff by < bj.

» The pattern shift graph, denoted PSG,, is the directed graph
on the permutations of [r] with u adjacent to v iff the last
r—1 entries in u and the first r — 1 entries in v pattern-match.




The Pattern Shift Graph

» Tuples (a1,...,a:) and (b1,..., bt) pattern-match if, for all
i,j, we have a; < aj iff by < bj.

» The pattern shift graph, denoted PSG,, is the directed graph
on the permutations of [r] with u adjacent to v iff the last
r—1 entries in u and the first r — 1 entries in v pattern-match.

» Note: {132,231} is a max. acyclic set in PSGs.
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Let k and r be constants, and let a(PSG,) be the maximum size
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] <
F(mr k) = 0(1) /.fk < a(PSG,) .
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Growing paths and spanning paths

Theorem
Let k and r be constants, and let a(PSG,) be the maximum size
of an acyclic set of vertices in PSG,. We have

o1 k) = {0(1) ifk < a(PSG,)
w(l) if k> a(PSGy)
If k < a(PSGy), then f(n,r k) <r+k—1.
> Let A be an acyclic set in PSG, of size k.
» Construct an (r, k)-tournament G on {1,...,n}:

> Put (uv1,...,u,) € E(G) iff (u1,...,u,) pattern-matches some
permutation in A.

» P cqG implies PSG,[A] has a walk of size s — (r — 1).
A is acyclic, so every walk in PSG,[A] has size at most |A|.
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The case r =3
» Recall: a(PSG3) = 2.
» So f(n,3,2) = O(1) and f(n,3,3) = w(1).

» In fact, we get f(n,3,2) < 3 and 7(n,3,3) > Q(loglog n).

» Warmup: f(n,3,5) = f(n,3,6) = n.
P Interesting cases: k = 3 and k = 4.

log n 1/4
& <<|og log n> < f(n,3,3) < O(logn).

Theorem

Theorem
f(n,3,4) > Q(n*/®).
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Outline: f(n,3,4) > Q(n*/?)

» Let G be an n-vertex (3, 4)-tournament.
» Each triple {u, v, w} has 4 orderings in E(G) and omits 2.



Outline: f(n,3,4) > Q(n*/?)

» Let G be an n-vertex (3, 4)-tournament.

» Each triple {u, v, w} has 4 orderings in E(G) and omits 2.
> Let s be the max. integer such that P5(3) C G.



Outline: f(n,3,4) > Q(n*/?)

» Let G be an n-vertex (3, 4)-tournament.

» Each triple {u, v, w} has 4 orderings in E(G) and omits 2.
> Let s be the max. integer such that P5(3) C G.

» For each (u,v), let P(uv) be a max. path ending uv.



Outline: f(n,3,4) > Q(n*/?)

Let G be an n-vertex (3, 4)-tournament.

Each triple {u, v, w} has 4 orderings in E(G) and omits 2.

For each (u,v), let P(uv) be a max. path ending uv.

>
>
> Let s be the max. integer such that P5(3) C G.
>
» Let s, = |V(P(uv))|.



Outline: f(n,3,4) > Q(n*/?)

vVvyvyVvVvyTyypy

Let G be an n-vertex (3, 4)-tournament.

Each triple {u, v, w} has 4 orderings in E(G) and omits 2.
Let s be the max. integer such that P5(3) C G.

For each (u,v), let P(uv) be a max. path ending uv.

Let s, = |V(P(uv))|.

Note: if uvw € E(G) then either w € V(P(uv)) or sy > suy.



Outline: f(n,3,4) > Q(n*/?)

vVvvyVvYVvy Vvyy

Let G be an n-vertex (3, 4)-tournament.

Each triple {u, v, w} has 4 orderings in E(G) and omits 2.
Let s be the max. integer such that P5(3) C G.

For each (u,v), let P(uv) be a max. path ending uv.

Let s, = |V(P(uv))|.

Note: if uvw € E(G) then either w € V(P(uv)) or sy > suy.

Say (u, v,w) is good if w € V(P(uv)). Say {u, v, w} is good
if at least one of its orderings is good.



Outline: f(n,3,4) > Q(n*/?)

vVvvyVvYVvy Vvyy

v

Let G be an n-vertex (3, 4)-tournament.

Each triple {u, v, w} has 4 orderings in E(G) and omits 2.
Let s be the max. integer such that P5(3) C G.

For each (u,v), let P(uv) be a max. path ending uv.

Let s, = |V(P(uv))|.

Note: if uvw € E(G) then either w € V(P(uv)) or sy > suy.
Say (u, v,w) is good if w € V(P(uv)). Say {u, v, w} is good
if at least one of its orderings is good.

Let m be num. of good triples in G. Note s > 3.
n



Outline: f(n,3,4) > Q(n*/?)

vVvvyVvYVvy Vvyy

vy

Let G be an n-vertex (3, 4)-tournament.

Each triple {u, v, w} has 4 orderings in E(G) and omits 2.
Let s be the max. integer such that P5(3) C G.

For each (u,v), let P(uv) be a max. path ending uv.

Let s, = |V(P(uv))|.

Note: if uvw € E(G) then either w € V(P(uv)) or sy > suy.
Say (u, v,w) is good if w € V(P(uv)). Say {u, v, w} is good
if at least one of its orderings is good.

Let m be num. of good triples in G. Note s > 7.

Let T be a max. set of vertices in G not containing a good
triple, and let t = | T|.



Outline: f(n,3,4) > Q(n*/?)

vVvvyVvYVvy Vvyy

vy

Let G be an n-vertex (3, 4)-tournament.
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Let G be an n-vertex (3, 4)-tournament.

Each triple {u, v, w} has 4 orderings in E(G) and omits 2.
Let s be the max. integer such that P5(3) C G.

For each (u,v), let P(uv) be a max. path ending uv.

Let s, = |V(P(uv))|.

Note: if uvw € E(G) then either w € V(P(uv)) or sy > suy.
Say (u, v,w) is good if w € V(P(uv)). Say {u, v, w} is good
if at least one of its orderings is good.

Let m be num. of good triples in G. Note s > '3

Let T be a max. set of vertices in G not containing a good

triple, and let t = | T|.

deCaen: m > () > (” 2)
)

sn?>m > ("3? and so t > Q((n/5)1/2)-
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|T| > Q((n/s)/?) and T has no good triple.

Suppose uvw € E(G[T)).

Since w € V(P(uv)), the edge uvw extends P(uv).

So sy > suy. Thus G[T] is acyclic.

Lemma: The maximum paths in a (3, 4)-tournament with no
C3(3) are pairwise intersecting.

This implies G[T] contains a tight path on L\/\T]J vertices.

So G has a path on at least max{s, Q((n/s)'/#)} vertices.
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> Let n,y=n(n—1)---(n—(r—1))=(1—o0(1))n".

Theorem

For each r and each positive ¢, for sufficiently large n, there is an
n-vertex fully directed r-graph G with |[E(G)| > (1 —1 — €)nr
such that every path in G has size at most r/e.

Theorem

For each r and each s, for all sufficiently large n, every n-vertex
fully directed r-graph G with |[E(G)| > (1 — %)n(,) contains a path
of size s.

> So (1-— %) is the density threshold for growing paths in fully
directed r-graphs.

> With £ =1 -1 _ L (r k)-tournaments have growing paths.

rt r rte
» The even distribution requirement of tournaments forces
growing paths at lower densities.
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Open Problems

v

Improve the bounds Q(n1/5) <f(n,3,4)<n
Does every (3,4)-tournament have a spanning path?

Improve the bounds

(1— C(I”r) )r! < k=a(PSG,) < (1—2— 2)rl on the
threshold k for growing paths in (r, k)-tournaments.

There are polynomial paths in fully directed 3-graphs at the
density threshold 2/3.

For r > 4, do fully directed r-graphs at the growing paths
density threshold 1 — % also have polynomial paths?

What is the threshold on k for (r, k)-tournaments to have
polynomial paths? spanning paths?

Thank You.



	Introduction

