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Abstract

We study a combinatorial coloring game between two players, Spoiler and Algorithm, who
alternate turns. First, Spoiler places a new token at a vertex in G, and Algorithm responds
by assigning a color to the new token. Algorithm must ensure that tokens on the same or
adjacent vertices receive distinct colors. Spoiler must ensure that the token graph (in which two
tokens are adjacent if and only if their distance in G is at most 1) has chromatic number at
most w. Algorithm wants to minimize the number of colors used, and Spoiler wants to force as
many colors as possible. Let f(w,G) be the minimum number of colors needed in an optimal
Algorithm strategy.

A graph G is online-perfect if f(w,G) = w. We give a forbidden induced subgraph char-
acterization of the class of online-perfect graphs. When G is not online-perfect, determining
f(w,G) seems challenging; we establish f(w,G) asymptotically for some (but not all) of the
minimal graphs that are not online-perfect. The game is motivated by a natural online coloring
problem on the real line which remains open.

1 Introduction

Our work is motivated by the following simple combinatorial game between two players, Spoiler
(sometimes called Presenter) and Algorithm. Spoiler moves first, selecting a point x ∈ R (repetition
allowed), with the restriction that for each open unit interval I, Spoiler may play in I at most w
times. Algorithm responds by assigning a color to x such that selected points at distance less than
1 are assigned distinct colors. The value of the game, denoted h(w), is the minimum number of
colors that an optimal Algorithm strategy needs in the worst case. The greedy algorithm shows
that h(w) ≤ 2w − 1, as follows. If none of the colors in {1, . . . , 2w − 1} is available for a selected
point x, then either (x− 1, x] or [x, x+ 1) contains at least w previously played points which, after
a small shift, can be captured in an open unit interval I containing x. Spoiler is forbidden to play
again in I, contradicting Spoiler’s selection of x. Despite its simplicity, the greedy algorithm gives
the best known upper bound on h(w).

From below, Bosek, Felsner, Kloch, Krawczyk, Matecki, and Micek [3] proved that h(w) ≥
⌊
3
2w
⌋
.

In their work, the problem of bounding h(w) arises as a special case of the online chain partition
problem for partially ordered sets. To obtain the lower bound on h(w), they offer the following
strategy for Spoiler, which has three stages. Let k =

⌊
w
2

⌋
. In the first stage, Spoiler plays k times

at 0. Let A be the set of colors that Algorithm uses. In the second stage, Spoiler plays at most 2k
times in the interval (1, 2) so that all points with new colors (outside A) are less than all points
with old colors (in A); Spoiler accomplishes this by always playing at a point between the new and
old colors. Spoiler stops this stage once Algorithm uses k new colors. Let B be the set of new
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colors, and let y ∈ (1, 2) be a point between the new and old colors. Note that (y − 1, y) contains
1 and therefore each color in B appears on a selected point in (y − 1, y). Similarly (y − 2, y − 1)
contains 0 and therefore each color in A appears on a selected point in (y − 2, y − 1). In the third
stage, Spoiler plays w−k times at y−1. Algorithm must use w−k additional colors outside A∪B.
In total, Algorithm uses w + k colors, and w + k =

⌊
3
2w
⌋
. This strategy for Spoiler gives the best

known lower bound on h(w).
It would be interesting to know the asymptotics of h(w). In attempting to make progress, we

studied a generalization of this problem to graphs. An independent set in a graph G is a set of
vertices that are pairwise nonadjacent. The chromatic number of G, denoted χ(G), is the minimum
size of a partition of V (G) into independent sets.

For our generalization, we use the token model, in which both the graph G and the width w
are known to both Algorithm and Spoiler. Spoiler selects a vertex u ∈ V (G) and plays a token x
at u. In the token graph, tokens x and y are adjacent if and only if x and y are on the same or
neighboring vertices in G. Spoiler must play in such a way that the token graph has chromatic
number at most w. After Spoiler plays a token x, Algorithm must assign a color to x so that
Algorithm’s coloring of the token graph is proper, meaning that tokens on the same or adjacent
vertices in G must be assigned distinct colors. The value of the game, denoted f(w,G), is the
minimum number of colors that an optimal strategy for Algorithm needs for the game in the worst
case. The motivating problem arises when G is the graph G with V (G) = R and uv ∈ E(G) if
and only if |u − v| < 1. With the exception of a few explicitly defined infinite graphs like G, we
generally assume that all graphs are finite.

In some cases, it is interesting to limit Spoiler so that Spoiler can play at most 1 token at
each vertex. We call this the restricted token model and use f∗(w,G) to denote the value of the
restricted token game on G of width w. Using G for the graph complement of G, we note that
the restricted token game on G is an online clustering problem: Spoiler presents distinct points
in R and Algorithm assigns colors so that the color classes, called clusters, have diameter less
than 1. (Usually, clusters are allowed to have diameter at most 1, but standard perturbation and
compactness arguments imply that these notions lead to equivalent games.) The trivial bounds
are

⌊
3
2w
⌋
≤ f∗(w,G) ≤ 2w − 1. The first nontrivial bounds are due to Epstein and van Stee [7],

who proved (85 − o(1))w ≤ f∗(w,G) ≤ 7
4w. Ehmsen and Larson [6] improved the upper bound

to f∗(w,G) ≤ 5
3w and Kawahara and Kobayashi [10] improved the lower bound to f∗(w,G) ≥

(138 − o(1))w.

1.1 Other Models

Several models of online graph coloring have been studied. In the classical model, Spoiler presents
the vertices of a graph in some order v1, . . . , vn and Algorithm must decide on a color for vi
knowing only the subgraph induced by {v1, . . . , vi}. For an algorithm A and a graph family G, the
performance ratio of A on G, denoted ρA(n,G), is the maximum, over all n-vertex graphs G ∈ G
and orderings of V (G), of the number of colors that A uses on G divided by χ(G). It is not difficult
to show that even when G is the family of acyclic graphs, every algorithm A satisfies ρA(n,G) ≥
1 + blg nc, and so the performance ratio of an algorithm in the classical model typically depends on
the number of vertices in the input graph. In 1989, for the class G of all graphs, Lovász, Saks, and
Trotter [13] proved that there exists an algorithm A such that ρA(n,G) = (1 + o(1))(2n/ log∗ n),
where log∗ n is the least integer k such that the kth iterated logarithm function log(k) satisfies
log(k)(n) < 1. Also in 1989, M. Szegedy (unpublished) showed that every online algorithm A
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satisfies ρA(n,G) ≥ Ω(n/(log n)2); for this and lower bounds on the performance of randomized
algorithms, see Halldórsson and Szegedy [9]. In 1998, Kierstead [11] showed that there exists an
algorithm A such that ρA(n,G) ≤ O(n log(3) n/ log(2)(n)), giving the best known performance ratio
for the class of all graphs in the classical model. For an older but still useful survey on results in
the classical model, see the survey paper by Kierstead [12].

In addition to the token model that we study, there are at least two other known-graph models.
Halldórsson [8] examined a model in which a host graph G is known to both players. Spoiler
presents vertices to Algorithm, promising that the presented graph H is a subgraph of G. However,
if G contains many copies of H, then Algorithm does not know which of these copies is H. Consider,
for example, the case G = C6. If the first two vertices that Spoiler presents are nonadjacent, then
the pair may be at distance 2 in G (in which case Algorithm prefers that they share a color) or
at distance 3 (in which case Algorithm prefers that they be colored differently). The performance
ratio of Algorithm is the number of colors that Algorithm uses divided by χ(G). Halldórsson
constructed for each n an n-vertex graph G such that every algorithm has performance ratio
at least Ω(n/(log n)2) on G, obtaining essentially the same lower bound as Halldórsson–Szegedy
against a stronger Algorithm.

A second known-graph model appears in a paper by Bartal, Fiat, and Leonardi [2] and an
extended abstract by the same authors [1]. Again, the host graph G is known to both Algorithm
and Spoiler. In this model, Spoiler reveals the location of vertices in G. The difficulty for Algorithm
is that Spoiler may stop the game at any subgraph H of G, and the performance ratio of Algorithm
is the number of colors used divided by χ(H) (not χ(G)). This model can also be viewed as a slight
variant of the restricted token model in which Algorithm does not know w. As usual, bounds on the
performance ratio are typically given in terms of n, where n = |V (G)|. Bartal, Fiat, and Leonardi
proved that there is an algorithm that achieves performance ratio O(n1/2) for each n-vertex graph
G and that every algorithm has performance ratio Ω(n1−log5 4). The lower bound applies even to
randomized algorithms.

1.2 Our Results

Since determining the asymptotics of h(w), or equivalently f(w,G), appears difficult, it is natural
to study the token model in simpler settings. A graph G is online-perfect if f(w,G) = w for
each w. Our main result is a forbidden-subgraph characterization of the family of online-perfect
graphs. The minimal graphs that are not online-perfect are the odd cycles of length at least 5, the
5-cycle with 1 or 2 non-crossing chords, and the bull graph. These graphs are perhaps the simplest
candidates for host graphs where the token game becomes an interesting problem. Of these, we
obtain the asymptotic value of f(w,G) when G is an odd cycle or the 5-cycle with 2 non-crossing
chords. In particular, we show that if n is odd and n ≥ 5, then f(w,Cn) = ( n

n−1 + o(1))w where

o(1) represents a function tending to 0 as w →∞. Also, f(w,G) =
⌈
5
4w
⌉

when w is even and G is
the 5-cycle with 2 non-crossing chords. The cases that G is the bull graph or that G is a 5-cycle
with a single chord remain open.

2 Characterization of online-perfect graphs

Our first strategy for Algorithm shows that bipartite graphs are online-perfect. A clique in G is a
set of vertices that are pairwise adjacent, and the clique number of a graph G, denoted ω(G), is
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the maximum size of a clique in G. Since no independent set contains more than one vertex of a
clique, we have χ(G) ≥ ω(G).

Proposition 1. If G is bipartite, then f(w,G) = w.

Proof. Let G be an (U, V )-bigraph, and let L be a list of w colors. Algorithm maintains the
invariant that for each u ∈ U , the colors used for tokens on u form a prefix of L. Similarly, for
each v ∈ V , the colors used for tokens on v form a suffix of L. When Spoiler plays a token x at
u ∈ U , Algorithm assigns to x the first color in L not already used for a token on u. When Spoiler
plays a token y at v ∈ V , Algorithm assigns to y the last color in L not already used for a token
on v. We claim that Algorithm produces a proper coloring of the token graph. Indeed, if x and y
are assigned the same color but are on adjacent vertices u ∈ U and v ∈ V , then u and v together
contain more than w tokens, implying that the token graph has clique number larger than w.

In a graph G, vertices u and v are twins if u and v have the same neighbors in V (G)− {u, v}.
Given a graph G and a vertex u in G, we clone u by introducing a new vertex u′ that is a twin of
u; in the new graph, u and u′ may or may not be adjacent.

Proposition 2. If G′ is obtained from G by cloning a vertex, then f(w,G′) = f(w,G).

Proof. Suppose that G′ be obtained from G by cloning u to a new vertex u′. Since G is an induced
subgraph of G′, we have f(w,G′) ≥ f(w,G). To show f(w,G′) ≤ f(w,G), we let A be an optimal
strategy for Algorithm for G and give an Algorithm strategy A′ for G′. The strategy depends on
whether or not uu′ ∈ E(G).

First, suppose uu′ ∈ E(G′). We have A′ simulate A on a token game on G. If Spoiler plays a
token at a vertex v 6∈ {u, u′}, then A′ plays a token at v in the simulation, and A′ gives the real
token the same color as A gives to the simulated token. If Spoiler plays a token at u or u′, then
A′ plays a token at u in the simulation and again responds with the same color as A. Since u
and u′ are adjacent in G′, the token graph in the real game is the same as the token graph in the
simulation. Therefore the width of the real game and the width of the simulation are equal and we
have f(w,G′) ≤ f(w,G).

Suppose that u and u′ are nonadjacent. In this case, we modify the strategy slightly so that the
number of tokens at u in the simulation is equal to the maximum of the number of tokens at u and
u′ in the real game. If Spoiler plays a token at u or u′ which would increase this maximum, then A′
plays a token at u in the simulation and responds with the same color. If Spoiler plays a token at u
when u′ already has at least as many tokens, then A′ does not play any tokens in the simulation and
responds with one of the colors appearing at u′ that does not appear at u. The case that Spoiler
plays a token at u′ when u already has at least as many tokens is similar. Again, the width of the
real game and the width of the simulation are equal, and it follows that f(w,G′) ≤ f(w,G).

For graphs G1 and G2, we use G1 + G2 to denote the disjoint union of G1 and G2. The join
of G1 and G2, denoted G1 ∨ G2, is the graph obtained from disjoint copies of G1 and G2 with all
vertices in the copy of G1 adjacent to all vertices in the copy of G2. The following proposition,
which we include for completeness, is an easy consequence of the theory of cographs, the graphs
that do not contain an induced copy of P4.

Proposition 3. A graph G is P4-free if and only if G is obtainable from K1 by cloning vertices.
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Proof. It is well known that if G is P4-free and |V (G)| ≥ 2, then either G = G1+G2 or G = G1∨G2

for some P4-free graphs G1 and G2. We obtain G1 +G2 by starting with a single vertex u1, cloning
to a nonadjacent vertex u2, and inductively obtaining G1 from u1 and G2 from u2. We obtain
G1 ∨G2 similarly, except that we begin with adjacent vertices u1 and u2.

Conversely, cloning vertices preserves being P4-free. Indeed, it is easy to check that P4 does not
contain a pair of twins. If G is P4-free but the graph G′ obtained from G by cloning u ∈ V (G) to
a twin u′ ∈ V (G′) produces a copy P of P4, then u and u′ are both in P . Since u and u′ are twins
in G′, they are also twins in P , a contradiction.

When G is an edge-transitive graph, we use G− to denote the graph obtained from G by
removing an edge. Similarly, when the complement of G is edge-transitive, we use G+ to denote
the graph obtained from G by adding an edge. The distance k-power of G, denoted Gk, is the
graph on V (G) with uv ∈ E(Gk) if and only if the distance between u and v in G is at most k.

Theorem 4. Let G be a graph. The following are equivalent.

(1) G is online-perfect.

(2) f(2, G) = 2.

(3) G does not contain any of the following as an induced subgraph:

. . .

Cn for odd n at least 5 C+
5 P 2

5 The Bull Graph B

(4) G is obtainable from a bipartite graph by cloning vertices.

Proof. It is obvious that (1) implies (2). To show that (2) implies (3), we give strategies for Spoiler
that force 3 colors in a game of width 2. Let u and v be vertices in a graph G that has induced
uv-paths of both parities. Spoiler plays a token x at u and a token y at v. If Algorithm assigns
the same color to x and y, then Spoiler forces two more colors by playing a token at each of the
internal vertices on an induced uv-path of odd length. If Algorithm assigns distinct colors to x and
y, then Spoiler forces a third color by playing a token at each of the internal vertices on an induced
uv-path of even length. In both cases, the token graph is a path, and so the game has width 2.
Except for the bull graph B, each graph in (3) has vertices u and v and induced uv-paths of both
parities. A different Spoiler strategy is needed for B. Let v1, . . . , v5 be the vertices of B along its
spanning path. Spoiler first plays a token x at v1 and a token y at v5. If Algorithm assigns the same
color to x and y, then Spoiler plays a token at v2 and another at v4. This forces two new colors,
and the token graph is P4. Otherwise, Algorithm assigns distinct colors to x and y. Spoiler plays a
token z at v3; without loss of generality, we may assume that x and z have distinct colors. Spoiler
forces a third color by playing a token at v2. With one token on each vertex in {v1, v2, v3, v5}, the
components of the token graph are P3 and P1, and again the token graph is bipartite. It follows
that if f(2, G) = 2, then G does not contain an induced copy of any of the graphs listed in (3).

We show that (3) implies (4) by contradiction; let G be a minimum counter-example. If G
contains twins u and u′, then G − u′ is a smaller graph avoiding induced copies of all graphs in
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(3), implying that G − u′ is obtainable from a bipartite graph by cloning. We could then obtain
G from G − u′ by cloning u. It follows that G does not contain twins. We consider two cases.
First, suppose that diam(G) ≤ 2. It must be that G contains an induced copy P of P4, or else
Proposition 3 implies that G is obtainable by cloning from the bipartite graph K1. Let u1, . . . , u4
be the vertices of P . Since P is induced and diam(G) ≤ 2, it follows that u1 and u4 have a common
neighbor v that is not on P . Hence v completes a 5-cycle with P in which all chords are incident
to v, and so V (P ) ∪ {v} induces one of {C5, C

+
5 , P

2
5 }, all of which are forbidden.

We may assume that diam(G) ≥ 3. Among all vertices in G that are at distance 3 from some
vertex, select a vertex u, favoring vertices whose neighborhoods are independent sets. For k ≥ 0,
let Gk be the subgraph of G induced by vertices at distance k from u. We claim that if H is
a component of Gk and v1 ∈ V (Gk−1), then v1 is adjacent to all vertices in H or none of them.
Indeed, if this is not the case, then let k be the least integer where this fails. Since v1 has a neighbor
and a non-neighbor in H and H is connected, there exists v0w0 ∈ E(H) such that v1v0 ∈ E(G)
but v1w0 6∈ V (G). Let w1 ∈ V (Gk−1) be a neighbor of w0, and let t be the least integer such that
G has paths v0v1 · · · vtx and w0w1 · · ·wtx with vj , wj ∈ V (Gk−j) and x ∈ V (Gk−(t+1)). By the
minimality of t, we have that viwi+1, wivi+1 6∈ E(G) for 1 ≤ j < t. By the minimality of k, we
have that viwi 6∈ E(G) for 1 ≤ i < t. It follows that v0v1 · · · vtxwtwt−1 · · ·w0 is a (2t + 3)-cycle C
in which the chords are a subset of {v0w1, vtwt}. If t ≥ 2, then either C is an induced odd cycle
of length at least 7, or either chord completes an induced copy of the bull. If t = 1, then C is a
5-cycle in which all chords are incident to w1, and so V (C) induces a graph in {C5, C

+
5 , P

2
5 }.

Next, we claim that if H is a component of Gk with k ≥ 2 and x ∈ V (Gk+1), then x is adjacent
to all vertices in H or none of them. Otherwise, we again obtain vw ∈ E(H) such that xv ∈ E(G)
but xw 6∈ E(G). Let y ∈ Gk−1 be a neighbor of v; also yw ∈ E(H). Let z ∈ V (Gk−2) be a neighbor
of y, and observe that {v, w, x, y, z} induces a copy of the bull.

We claim that Gk has no edges for k ≥ 2. Let H be a component of Gk, and let x ∈ V (Gk−1)
contain H in its neighborhood. Note that H is P4-free, or else an induced copy of P4 in H together
with x yields an induced copy of P 2

5 . It follows from Proposition 3 that either H = K1 or H
contains a pair of twins. Since k ≥ 2, a pair of twins in H would also be a pair of twins in G, and
so H = K1 as claimed.

Note that G1 also has no edges. Indeed, if z is a vertex at maximum distance k from u, then
k ≥ 3 and z is an isolated vertex in Gk. It follows that all neighbors of z are isolated vertices in
Gk−1 and therefore N(z) is an independent set. If N(u) were not independent, then we would prefer
z to u in our initial selection of u. It follows that N(u) is an independent set, and V (G1) = N(u).
Since each Gk has no edges, it follows that G is a bipartite graph, contradicting that G is a
counter-example. Therefore (3) implies (4).

It remains to show that (4) implies (1). By Proposition 1, every bipartite graph is online-perfect.
By Proposition 2, cloning vertices preserves online-perfection.

A graph G is perfect if χ(H) = ω(H) for each induced subgraph H of G. The Strong Perfect
Graph Theorem of Chudnovsky, Robertson, Seymour, and Thomas [5] states that G is perfect if
and only if G does not contain an odd hole or an odd antihole. A hole is an induced cycle of length
at least 4, and an antihole is an induced subgraph whose complement is a hole. Note that a set
of 5 consecutive vertices on a cycle of length larger than 5 induces a copy of P5, and P5 = C+

5 .
It follows that an antihole on more than 5 vertices contains an induced copy of C+

5 . By (3), odd
holes and odd antiholes are forbidden in online-perfect graphs, and so every online-perfect graph is
perfect.
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It also follows from (4) and Proposition 3 that G is online-perfect if and only if G is obtainable
from a bipartite graph by replacing each vertex with a copy of a P4-free graph.

3 Minimal graphs that are not online-perfect

WhenG is not online-perfect, it contains an induced copy of one of the obstructions from Theorem 4.
It is natural to study the value of the online-coloring game for these graphs; although these are the
simplest graphs that are not online-perfect, we are only able to establish the asymptotics for the
odd cycles and P 2

5 . We begin with a strategy for Algorithm that generalizes Proposition 1.
A (p, q)-coloring of a graph G is an assignment φ that maps each vertex in G to a set of q colors

from a universe of p colors such that φ(u) and φ(v) are disjoint when uv ∈ E(G). Usually, we use
[p] for the universe of colors and write φ : V (G)→

(
[p]
q

)
, where

(
[p]
q

)
denotes the family of subsets of

[p] of size q. The fractional chromatic number of G, denoted χf (G), is the infimum of p/q over all
pairs (p, q) such that G has a (p, q)-coloring. There is an equivalent alternative formulation of the
fractional chromatic number as the optimum value of a linear program involving the independent
set polytope of G, and it follows that each graph G has a (p, q)-coloring such that χf (G) = p/q.

Proposition 5 (Fractional Coloring Strategy). If G has a (p, q)-coloring, then f(w,G) ≤ p
⌈
w
2q

⌉
.

Consequently, f(w,G) ≤ (
χf (G)

2 + o(1))w.

Proof. Let φ : V (G)→
(
[p]
q

)
be a (p, q)-coloring, where χf (G) = p/q. For a list L, let Lr denote the

list obtained by reversing L. Also, let L1 · L2 be the concatenation of lists L1 and L2, and when
I is a set of integer indices, let

∏
i∈I Li denote the concatenation of lists where entries in Li come

before Lj if and only if i < j.
Let t = dw/(2q)e and let S1, . . . , Sp be disjoint lists of t colors. For each vertex u, the forward

list at u, denoted Fu, is [
∏
j∈A Sj ] and the reverse list at u, denoted Ru, is [

∏
j∈B Sj ]

r, where
A = φ(u) and B = [p]− φ(u). Let Lu = Fu ·Ru. Algorithm maintains the invariant that, for each
vertex u, the tokens played at u are colored with a prefix of Lu. When Spoiler plays a token x at
u, Algorithm assigns to x the first color in Lu that is not already used for a token at u. Provided

that Algorithm produces a proper coloring of the token graph, we have f(w,G) ≤ tp =
⌈
w
2q

⌉
p <

( w2q + 1)p = ( p2q + p
w )w = (χf (G)/2 + o(1))w.

Suppose for a contradiction that a token x is played at u but its designated color α already
appears on a token at a neighbor v. Since φ(u) and φ(v) are disjoint, the colors in Fu appear in Rv
in reverse order, and colors in Fv appear in Ru in reverse order. We claim that all colors in Fu∪Fv
appear on tokens at u or v. Note that all colors preceding α in Fu · Ru appear on tokens at u. If
α is in Fu, then colors in Fu following α appear before α in Rv. By the prefix invariant at v, all
colors preceding α in Fv · Rv appear on tokens at v; these colors include Fv as well as those in Fu
following α. Otherwise, α ∈ Ru, and so every color in Fu appears on tokens at u. If α ∈ Rv, then
every color in Fv appears on tokens at v. If α ∈ Fv, then colors in Fv preceding α appear at v and
colors in Fv following α appear before α in Ru and therefore are used on tokens at u.

In all cases, since |Fu| = |Fv| = qt, it follows that at least 2qt tokens other than x have been
played at u and v. These tokens form a clique in the token graph, and so w > 2qt, contradicting
our choice of t.

For a graph G and a set of vertices S ⊆ G, we use G[S] to denote the subgraph of G induced
by S.
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Proposition 6 (Spoiler Strategy). Let U ⊆ V (G) where U = {u1, ..., ut}, and suppose that

(1) there are vertices x and y such that u1xyut is a path and G[{u1, x, y, ut}] is bipartite, and

(2) there is a common neighbor zi of ui and ui+1 such that G[U ∪ {zi}] is bipartite for 1 ≤ i < t.

If w is even, then f(w,G) ≥ (1 + 1
2t)w.

Proof. With k = w/2, Spoiler plays k tokens at u1 and ut. Let Si be the set of colors at ui. If
|S1 ∩ St| ≥ k/t then Spoiler plays k tokens at each of {x, y}. This forces 2k+ k/t colors. Since the
subgraph of G induced by {u1, x, y, ut} is bipartite, the chromatic number of the token graph is at
most 2k.

Otherwise |S1 ∩ St| < k/t and |S1 − St| > k − k/t. Spoiler plays k tokens at each ui for
1 < i < t. Since S1 − St is contained in

⋃
i<t Si − Si+1, it follows that for some i, we have

|Si − Si+1| ≥ |S1−St|
(t−1) > k

t . Spoiler plays k tokens at zi. Algorithm uses disjoint sets of k colors at

zi and ui+1, plus at least k/t additional colors at ui; this forces at least 2k + k/t colors in total.
Since the subgraph of G induced by U ∪ {zi} is bipartite, the token graph has chromatic number
at most 2k in this case also.

Corollary 7 (Odd Holes). Let n be odd and at least 5. We have n
n−1 ·2

⌊
w
2

⌋
≤ f(w,Cn) ≤ n

⌈
w
n−1

⌉
and f(w,Cn) = n

n−1w when n− 1 divides w. Therefore f(w,Cn) = ( n
n−1 + o(1))w, where the o(1)

term tends to 0 for each fixed n as w →∞.

Proof. Let w′ = 2
⌊
w
2

⌋
, so that w′ is the largest even integer at most w. With t = (n − 1)/2 and

u1, . . . , ut spaced along Cn so that ui and ui+1 are at distance 2 for 1 ≤ i < t, the Spoiler Strategy
gives f(w,Cn) ≥ f(w′, Cn) ≥ (1 + 1

2t)w
′ = n

n−1 · 2
⌊
w
2

⌋
. Since Cn has an (n, (n− 1)/2)-coloring, the

Algorithm Strategy gives f(w,Cn) ≤ n
⌈

w
n−1

⌉
. When n is odd and n − 1 divides w, the bounds

reduce to f(w,Cn) = n
n−1w.

Corollary 8. We have 5
2

⌊
w
2

⌋
≤ f(w,C+

5 ) ≤ 3
⌈
w
2

⌉
.

Proof. Let w′ = 2
⌊
w
2

⌋
, so that w′ is the largest even integer at most w. Let u1 and u2 be two

nonadjacent vertices of degree two belonging to C+
5 . The Spoiler Strategy gives f(w′, C+

5 ) ≥
f(w′, C+

5 ) ≥ 5
4w
′ = 5

2

⌊
w
2

⌋
. Since C+

5 has a (3, 1)-coloring, the Algorithm Strategy gives f(w,C+
5 ) ≤

3
⌈
w
2

⌉
.

Corollary 9. We have 7
3

⌊
w
2

⌋
≤ f(w,B) ≤ 3

⌈
w
2

⌉
.

Proof. Let w′ = 2
⌊
w
2

⌋
, so that w′ is the largest even integer at most w. In the bull B, let u1

and u3 be vertices of degree 1 and let u2 be the vertex of degree 2. The Spoiler Strategy gives
f(w,B) ≥ f(w′, B) ≥ 7

6w
′ = 7

3

⌊
w
2

⌋
. Since B has a (3, 1)-coloring, the Algorithm Strategy gives

f(w,B) ≤ 3
⌈
w
2

⌉
.
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4 Asymptotics for P 2
5

Applying the argument of Corollary 8 to P 2
5 shows that f(w,P 2

5 ) is bounded by (1− o(1))54w from
below and (1 + o(1))32w from above. In this section, we improve Algorithm’s strategy to obtain
f(w,P 2

5 ) exactly when w is even.

Theorem 10. We have 5
2

⌊
w
2

⌋
≤ f(w,P 2

5 ) ≤ 5w+2
4 for each w. Consequently, when w is even, we

have f(w,P 2
5 ) =

⌈
5
4w
⌉
.

Proof. The lower bound follows the same argument as in Corollary 8. For the upper bound, we
give a strategy for Algorithm. It is convenient to label the vertices of P 2

5 according to the structure
of the complementary graph. The complement of P 2

5 is the union of an isolated vertex v0 and
a path v1v2v3v4. Each color class that Algorithm uses appears on vertices forming a nonempty
independent set in P 2

5 ; these are the 5 singletons plus the pairs v1v2, v2v3, and v3v4. For each
nonempty set I ⊆ {0, . . . , 4}, we let yI be the number of colors assigned by algorithm that appear
on vertices in {vi : i ∈ I} and no other vertex. We view the yI as variables whose values change
throughout the game, and we define the vector y = (y0, y1, y12, y2, y23, y3, y34, y4).

We are now able to describe Algorithm’s strategy. If Spoiler plays a token at v0, then Algorithm
responds by assigning the token a new color. (Since v0 is dominating in P 2

5 , Algorithm has no choice
here.) The pairs v1v2 and v3v4 are greedy ; that is, if Spoiler plays a token at a vertex in {v1, . . . , v4},
then Algorithm first attempts to extend a color class which appears only on its greedy mate to
accommodate the new token. Otherwise, Algorithm assigns the token a new color unless this would
result in min{y2, y3} > (w + 1)/4. In this case, Spoiler has played a token at vi ∈ {v2, v3}; let j
index the other vertex in {v2, v3}. Algorithm assigns the new token at vi a color which appears
only at vj .

Observe that Algorithm maintains the following invariants. Since v1v2 and v3v4 are greedy pairs,
we have min{y1, y2} = min{y3, y4} = 0. We also have min{y2, y3} ≤ (w + 1)/4. Also, since v0v1v3,
v0v1v4, and v0v2v4 are triangles in P 2

5 , the width condition implies that each of these triples has at
most w tokens. This gives the following three bounds, which we present as a matrix inequality.

y0 y1 y12 y2 y23 y3 y34 y4( )v0v1v3 1 1 1 1 1 1
v0v1v4 1 1 1 1 1
v0v2v4 1 1 1 1 1 1

y ≤
( )w
w
w

Suppose that the game is played to its conclusion. We bound the total number of colors S used
by Algorithm by examining 4 cases, according to which variables in the pairs {y1, y2} and {y3, y4}
are zero. Let S1, S2, and S3 be the sums of the terms on the left hand sides of the inequalities in
rows 1, 2, and 3, respectively. If y2 = y4 = 0, then we have S = S1 + y2 + y4 ≤ w. Similarly, if
y1 = y3 = 0, then S = S3 + y1 + y3 ≤ w. If y1 = y4 = 0, then we have S = S1 + y2 = S3 + y3 and
hence S ≤ w + min{y2, y3} ≤ (5w + 1)/4.

Otherwise, y2 = y3 = 0. If also y23 = 0, then S = S2 + y2 + y23 + y3 ≤ w. Hence we
may assume that y23 > 0, implying that at some point Algorithm extends a color which appears
on only one of v2, v3 so that it appears on both. Consider the last such time that Algorithm
increases y23. Before the corresponding token is played, we have max{y2, y3} > (w + 1)/4 and
min{y2, y3} + 1 > (w + 1)/4. After this token is played and algorithm assigns a color increasing
y23, we have that min{y2, y3} > (w + 1)/4 − 1 and so min{y2, y3} ≥ (w + 2)/4 − 1. However, as
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this is the last time that y23 is increased and yet y2 = y3 = 0 at the end of the game, it must be
that y12 and y34 are each incremented at least (w + 2)/4− 1 times. Therefore, on termination, we
have y12 + y34 ≥ (w + 2)/2− 2. With respect to the values at termination, we compute

3S = (S1 + y2 + y4) + (S2 + y2 + y23 + y3) + (S3 + y1 + y3)

≤ 3w + y1 + y4 + y23

= 3w + S − (y0 + y12 + y34)

≤ 3w + S − w − 2

2

and it follows that S ≤ (5w + 2)/4.

5 Open Problems

There are many open problems. Perhaps the two most compelling problems are to determine the
asymptotics of f(w,G) and f∗(w,G). There are natural extensions of both problems to higher
dimensions, where Gd,p is the graph on Rd with uv ∈ E(Gd,p) if and only if the p-norm distance
between u and v is less than 1. Chan and Zarrabi-Zadeh [4] noted that if f∗(w,G) ≤ cw for
some constant c, then f∗(w,Gd,∞) ≤ c2d−1w. We are not aware of any other work on the higher-
dimensional analogues.

It would be nice to obtain f(w,G) asymptotically for the remaining minimally non-online-perfect
graphs, when G = C+

5 or G is the bull graph. We believe the following may be approachable.

Conjecture 11. f(w,C+
5 ) = (54 + o(1))w.

By constructing large graphs that simulate the flexibility of Spoiler in the classical model, one
can show that for each k, there exists a graph Gk such that f(2, Gk) ≥ k. However, the following
question remains unresolved.

Question 1. Is there a constant c such that f(w,G) ≤ (c+ o(1))w for each (finite) graph G?

We know only that c must be at least 5/4.
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